/usr/include/trilinos/Epetra_CrsMatrix.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 | //@HEADER
/*
************************************************************************
Epetra: Linear Algebra Services Package
Copyright (2001) Sandia Corporation
Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the U.S. Government.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
Questions? Contact Michael A. Heroux (maherou@sandia.gov)
************************************************************************
*/
//@HEADER
#ifndef EPETRA_CRSMATRIX_H
#define EPETRA_CRSMATRIX_H
#include "Epetra_ConfigDefs.h"
#include "Epetra_DistObject.h"
#include "Epetra_CompObject.h"
#include "Epetra_BLAS.h"
#include "Epetra_RowMatrix.h"
#include "Epetra_Operator.h"
#include "Epetra_CrsGraph.h"
class Epetra_Map;
class Epetra_Import;
class Epetra_Export;
class Epetra_Vector;
class Epetra_MultiVector;
// Define this to see a complete dump a an Epetra_CrsMatrix::Multiply(...) call
//#define EPETRA_CRS_MATRIX_TRACE_DUMP_MULTIPLY
#ifdef EPETRA_CRS_MATRIX_TRACE_DUMP_MULTIPLY
extern bool Epetra_CrsMatrixTraceDumpMultiply;
#endif // EPETRA_CRS_MATRIX_TRACE_DUMP_MULTIPLY
//! Epetra_CrsMatrix: A class for constructing and using real-valued double-precision sparse compressed row matrices.
/*! The Epetra_CrsMatrix class is a sparse compressed row matrix object. This matrix can be
used in a parallel setting, with data distribution described by Epetra_Map attributes.
The structure or graph of the matrix is defined by an Epetra_CrsGraph attribute.
In addition to coefficient access, the primary operations provided by Epetra_CrsMatrix are matrix
times vector and matrix times multi-vector multiplication.
Epetra_CrsMatrix matrices can be square or rectangular.
<b>Creating and filling Epetra_CrsMatrix objects</b>
Constructing Epetra_CrsMatrix objects is a multi-step process. The basic steps are as follows:
<ol>
<li> Create Epetra_CrsMatrix instance, including storage, via one of the constructors:
<ul>
<li>Constructor that accepts one Epetra_Map object, a row-map defining the distribution of matrix rows.
<li>Constructor that accepts two Epetra_Map objects. (The second map is a column-map, and describes the set
of column-indices that appear in each processor's portion of the matrix. Generally these are
overlapping sets -- column-indices may appear on more than one processor.)
<li>Constructor that accepts an Epetra_CrsGraph object, defining the non-zero structure of the matrix.
</ul>
Note that the constructors which accept Epetra_Map arguments also accept an argument that gives an
estimate of the number of nonzeros per row. This allows storage to be pre-allocated and can improve
the performance of the data input methods. The estimate need not be accurate, as additional storage is
allocated automatically when needed. However, a more accurate estimate helps performance by reducing
the amount of extra memory allocation.
<li> Enter values via one or more Insert/Replace/SumInto functions.
<li> Complete construction by calling FillComplete.
</ol>
Note that, even after a matrix is constructed (FillComplete has been called), it is possible to update existing
matrix entries. It is \e not possible to create new entries.
<b>Epetra_Map attributes</b>
Epetra_CrsMatrix objects have four Epetra_Map attributes, which are held by the Epetra_CrsGraph attribute.
The Epetra_Map attributes can be obtained via these accessor methods:
<ul>
<li>RowMap() Describes the numbering and distribution of the rows of the matrix. The row-map exists and is valid
for the entire life of the matrix. The set of matrix rows is defined by the row-map and may not be changed. Rows
may not be inserted or deleted by the user. The only change that may be made is that the user can replace the
row-map with a compatible row-map (which is the same except for re-numbering) by calling the ReplaceRowMap() method.
<li>ColMap() Describes the set of column-indices that appear in the rows in each processor's portion of the matrix.
Unless provided by the user at construction time, a valid column-map doesn't exist until FillComplete() is called.
<li>RangeMap() Describes the range of the matrix operator. e.g., for a matrix-vector product operation, the result
vector's map must be compatible with the range-map of this matrix. The range-map is usually the same as the row-map.
The range-map is set equal to the row-map at matrix creation time, but may be specified by the user when
FillComplete() is called.
<li>DomainMap() Describes the domain of the matrix operator. The domain-map can be specified by the user when
FillComplete() is called. Until then, it is set equal to the row-map.
</ul>
It is important to note that while the row-map and the range-map are often the same, the column-map and the domain-map
are almost never the same. The set of entries in a distributed column-map almost always form overlapping sets, with
entries being associated with more than one processor. A domain-map, on the other hand, must be a 1-to-1 map, with
entries being associated with only a single processor.
<b>Local versus Global Indices</b>
Epetra_CrsMatrix has query functions IndicesAreLocal() and IndicesAreGlobal(), which are used to determine whether the
underlying Epetra_CrsGraph attribute's column-indices have been transformed into a local index space or not. (This
transformation occurs when the method Epetra_CrsGraph::FillComplete() is called, which happens when the
method Epetra_CrsMatrix::FillComplete() is called.) The state of the indices in the
graph determines the behavior of many Epetra_CrsMatrix methods. If an Epetra_CrsMatrix instance is constructed using
one of the constructors that does not accept a pre-existing Epetra_CrsGraph object, then an Epetra_CrsGraph attribute
is created internally and its indices remain untransformed (IndicesAreGlobal()==true) until Epetra_CrsMatrix::FillComplete()
is called. The query function Epetra_CrsMatrix::Filled() returns true if Epetra_CrsMatrix::FillComplete() has been
called.
Note the following method characteristics:
<ul>
<li>InsertGlobalValues() may only be used to insert new nonzeros in the matrix if indices are global.
<li>SumIntoGlobalValues() may be used regardless of whether indices are global or local, but can only be used
to update matrix locations that already exist; it can never be used to establish new nonzero locations.
<li>ReplaceGlobalValues() may also be used only to update matrix locations that already exist, and works
regardless of whether indices are local or global.
<li>SumIntoMyValues() and ReplaceMyValues() may only be used if indices are local.
<li>Multiply() may only be used after FillComplete() has been called.
</ul>
Most methods have preconditions documented, check documentation for specific methods not mentioned here.
<b> Counting Floating Point Operations </b>
Each Epetra_CrsMatrix object keeps track of the number
of \e serial floating point operations performed using the specified object as the \e this argument
to the function. The Flops() function returns this number as a double precision number. Using this
information, in conjunction with the Epetra_Time class, one can get accurate parallel performance
numbers. The ResetFlops() function resets the floating point counter.
\warning A Epetra_Map is required for the Epetra_CrsMatrix constructor.
*/
class EPETRA_LIB_DLL_EXPORT Epetra_CrsMatrix: public Epetra_DistObject, public Epetra_CompObject, public Epetra_BLAS, public virtual Epetra_RowMatrix {
public:
//! @name Constructors/Destructor
//@{
//! Epetra_CrsMatrix constructor with variable number of indices per row.
/*! Creates a Epetra_CrsMatrix object and allocates storage.
\param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
\param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
\param NumEntriesPerRow - (In) An integer array of length NumRows
such that NumEntriesPerRow[i] indicates the (approximate if StaticProfile=false) number of entries in the ith row.
\param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
count of nonzeros, or should be used as an approximation. By default this value is false, allowing the profile to be determined
dynamically. If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
*/
Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, const int* NumEntriesPerRow, bool StaticProfile = false);
//! Epetra_CrsMatrix constructor with fixed number of indices per row.
/*! Creates a Epetra_CrsMatrix object and allocates storage.
\param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
\param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
\param NumEntriesPerRow - (In) An integer that indicates the (approximate) number of entries in the each row.
Note that it is possible to use 0 for this value and let fill occur during the insertion phase.
\param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
count of nonzeros, or should be used as an approximation. By default this value is false, allowing the profile to be determined
dynamically. If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
*/
Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, int NumEntriesPerRow, bool StaticProfile = false);
//! Epetra_CrsMatrix constructor with variable number of indices per row.
/*! Creates a Epetra_CrsMatrix object and allocates storage.
\param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
\param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
\param ColMap - (In) An Epetra_Map defining the set of column-indices that appear in each processor's
locally owned matrix rows.
\param NumEntriesPerRow - (In) An integer array of length NumRows
such that NumEntriesPerRow[i] indicates the (approximate if StaticProfile=false) number of entries in the ith row.
\param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
count of nonzeros, or should be used as an approximation. By default this value is false, allowing the profile to be determined
dynamically. If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
*/
Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, const Epetra_Map& ColMap, const int* NumEntriesPerRow, bool StaticProfile = false);
//! Epetra_CrsMatrix constuctor with fixed number of indices per row.
/*! Creates a Epetra_CrsMatrix object and allocates storage.
\param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
\param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
\param ColMap - (In) An Epetra_Map defining the set of column-indices that appear in each processor's
locally owned matrix rows.
\param NumEntriesPerRow - (In) An integer that indicates the (approximate if StaticProfile=false) number of entries in the each row.
Note that it is possible to use 0 for this value and let fill occur during the insertion phase.
\param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
count of nonzeros, or should be used as an approximation. By default this value is false, allowing the profile to be determined
dynamically. If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
*/
Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, const Epetra_Map& ColMap, int NumEntriesPerRow, bool StaticProfile = false);
//! Construct a matrix using an existing Epetra_CrsGraph object.
/*! Allows the nonzero structure from another matrix, or a structure that was
constructed independently, to be used for this matrix.
\param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
\param Graph - (In) A Epetra_CrsGraph object, constructed directly or extracted from another Epetra matrix object.
*/
Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_CrsGraph& Graph);
//! Copy constructor.
Epetra_CrsMatrix(const Epetra_CrsMatrix& Matrix);
//! Epetra_CrsMatrix Destructor
virtual ~Epetra_CrsMatrix();
//@}
//! @name Insertion/Replace/SumInto methods
//@{
//! Assignment operator
Epetra_CrsMatrix& operator=(const Epetra_CrsMatrix& src);
//! Initialize all values in the matrix with constant value.
/*!
\param ScalarConstant - (In) Value to use.
\return Integer error code, set to 0 if successful.
\pre None.
\post All values in \e this set to ScalarConstant.
*/
int PutScalar(double ScalarConstant);
//! Multiply all values in the matrix by a constant value (in place: A <- ScalarConstant * A).
/*!
\param ScalarConstant - (In) Value to use.
\return Integer error code, set to 0 if successful.
\pre None.
\post All values of \e this have been multiplied by ScalarConstant.
*/
int Scale(double ScalarConstant);
//! Insert a list of elements in a given global row of the matrix.
/*!
This method is used to construct a matrix for the first time. It cannot
be used if the matrix structure has already been fixed (via a call to FillComplete()).
If multiple values are inserted for the same matrix entry, the values are initially
stored separately, so memory use will grow as a result. However, when FillComplete is called
the values will be summed together and the additional memory will be released.
For example, if the values 2.0, 3.0 and 4.0 are all inserted in Row 1, Column 2, extra storage
is used to store each of the three values separately. In this way, the insert process does not
require any searching and can be faster. However, when FillComplete() is called, the values
will be summed together to equal 9.0 and only a single entry will remain in the matrix for
Row 1, Column 2.
\param GlobalRow - (In) Row number (in global coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Global column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if the
allocated length of the row has to be expanded, a positive warning code
will be returned.
\warning This method may not be called once FillComplete() has been called.
\pre IndicesAreLocal()==false && IndicesAreContiguous()==false
*/
virtual int InsertGlobalValues(int GlobalRow, int NumEntries, const double* Values, const int* Indices);
//! Insert a list of elements in a given global row of the matrix.
/*!
This method is used to construct a matrix for the first time. It cannot
be used if the matrix structure has already been fixed (via a call to FillComplete()).
If multiple values are inserted for the same matrix entry, the values are initially
stored separately, so memory use will grow as a result. However, when FillComplete is called
the values will be summed together and the additional memory will be released.
For example, if the values 2.0, 3.0 and 4.0 are all inserted in Row 1, Column 2, extra storage
is used to store each of the three values separately. In this way, the insert process does not
require any searching and can be faster. However, when FillComplete() is called, the values
will be summed together to equal 9.0 and only a single entry will remain in the matrix for
Row 1, Column 2.
\param GlobalRow - (In) Row number (in global coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Global column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if the
allocated length of the row has to be expanded, a positive warning code
will be returned.
\warning This method may not be called once FillComplete() has been called.
\pre IndicesAreLocal()==false && IndicesAreContiguous()==false
*/
virtual int InsertGlobalValues(int GlobalRow, int NumEntries, double* Values, int* Indices);
//! Replace specified existing values with this list of entries for a given global row of the matrix.
/*!
\param GlobalRow - (In) Row number (in global coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Global column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if a value
is not already present for the specified location in the matrix, the
input value will be ignored and a positive warning code will be returned.
\pre IndicesAreLocal()==false && IndicesAreContiguous()==false
*/
virtual int ReplaceGlobalValues(int GlobalRow, int NumEntries, const double* Values, const int* Indices);
//! Add this list of entries to existing values for a given global row of the matrix.
/*!
\param GlobalRow - (In) Row number (in global coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Global column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if a value
is not already present for the specified location in the matrix, the
input value will be ignored and a positive warning code will be returned.
\pre IndicesAreLocal()==false && IndicesAreContiguous()==false
*/
virtual int SumIntoGlobalValues(int GlobalRow, int NumEntries, const double* Values, const int* Indices);
//! Insert a list of elements in a given local row of the matrix.
/*!
\param MyRow - (In) Row number (in local coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Local column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if the
allocated length of the row has to be expanded, a positive warning code
will be returned.
\pre IndicesAreGlobal()==false && (IndicesAreContiguous()==false || CV_==View)
\post The given local row of the matrix has been updated as described above.
*/
int InsertMyValues(int MyRow, int NumEntries, const double* Values, const int* Indices);
//! Insert a list of elements in a given local row of the matrix.
/*!
\param MyRow - (In) Row number (in local coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Local column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if the
allocated length of the row has to be expanded, a positive warning code
will be returned.
\pre IndicesAreGlobal()==false && (IndicesAreContiguous()==false || CV_==View)
\post The given local row of the matrix has been updated as described above.
*/
int InsertMyValues(int MyRow, int NumEntries, double* Values, int* Indices);
//! Replace current values with this list of entries for a given local row of the matrix.
/*!
\param MyRow - (In) Row number (in local coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Local column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if a value
is not already present for the specified location in the matrix, the
input value will be ignored and a positive warning code will be returned.
\pre IndicesAreLocal()==true
\post MyRow contains the given list of Values at the given Indices.
*/
int ReplaceMyValues(int MyRow, int NumEntries, const double* Values, const int* Indices);
//! Add this list of entries to existing values for a given local row of the matrix.
/*!
\param MyRow - (In) Row number (in local coordinates) to put elements.
\param NumEntries - (In) Number of entries.
\param Values - (In) Values to enter.
\param Indices - (In) Local column indices corresponding to values.
\return Integer error code, set to 0 if successful. Note that if the
allocated length of the row has to be expanded, a positive warning code
will be returned.
\pre IndicesAreLocal()==true
\post The given Values at the given Indices have been summed into the
entries of MyRow.
*/
int SumIntoMyValues(int MyRow, int NumEntries, const double* Values, const int* Indices);
//! Replaces diagonal values of the matrix with those in the user-provided vector.
/*! This routine is meant to allow replacement of {\bf existing} diagonal values.
If a diagonal value does not exist for a given row, the corresponding value in
the input Epetra_Vector will be ignored and the return code will be set to 1.
The Epetra_Map associated with the input Epetra_Vector must be compatible with
the RowMap of the matrix.
\param Diagonal - (In) New values to be placed in the main diagonal.
\return Integer error code, set to 0 if successful, set to 1 on the calling processor if one or more diagonal entries not present in matrix.
\pre Filled()==true
\post Diagonal values have been replaced with the values of Diagonal.
*/
int ReplaceDiagonalValues(const Epetra_Vector& Diagonal);
//@}
//! @name Transformation methods
//@{
//! Signal that data entry is complete. Perform transformations to local index space.
/* This version of FillComplete assumes that the domain and range
distributions are identical to the matrix row distributions.
\param OptimizeDataStorage - (In) If true, storage will be packed for optimal performance. Depending
on how the matrix was constructed, optimizing the storage may have no impact on performance
or one-time memory use, or may have a large impact. If the user was careful in allocating memory
for the matrix by setting StaticProfile to true in the matrix constructor, then no extra storage
will be allocated in attempting to optimize storage. If the user did not set StaticProfile to true,
then optimizing the storage will temporarily use additional memory, will have a noticeable impact
on performance and ultimately reduce the storage associated with the matrix.
By default storage will be optimized. If you cannot tolerate the increased temporary memory use,
should set this value to false.
\return error code, 0 if successful. Returns a positive warning code of 3
if the matrix is rectangular (meaning that the other overloading of
FillComplete should have been called, with differen domain-map and
range-map specified).
*/
int FillComplete(bool OptimizeDataStorage = true);
//! Signal that data entry is complete. Perform transformations to local index space.
/* This version of FillComplete requires the explicit specification of the domain
and range distribution maps. These maps are used for importing and exporting vector
and multi-vector elements that are needed for distributed matrix computations. For
example, to compute y = Ax in parallel, we would specify the DomainMap as the distribution
of the vector x and the RangeMap as the distribution of the vector y.
\param DomainMap - (In) Map that describes the distribution of vector and multi-vectors in the
matrix domain.
\param RangeMap - (In) Map that describes the distribution of vector and multi-vectors in the
matrix range.
\param OptimizeDataStorage - (In) If true, storage will be packed for optimal performance. Depending
on how the matrix was constructed, optimizing the storage may have no impact on performance
or one-time memory use, or may have a large impact. If the user was careful in allocating memory
for the matrix by setting StaticProfile to true in the matrix constructor, then no extra storage
will be allocated in attempting to optimize storage. If the user did not set StaticProfile to true,
then optimizing the storage will temporarily use additional memory, will have a noticeable impact
on performance and ultimately reduce the storage associated with the matrix.
By default storage will be optimized. If you cannot tolerate the increased temporary memory use,
should set this value to false.
\return error code, 0 if successful. positive warning code of 2 if it is detected that the
matrix-graph got out of sync since this matrix was constructed (for instance if
graph.FillComplete() was called by another matrix that shares the graph)
\post IndicesAreLocal()==true
*/
int FillComplete(const Epetra_Map& DomainMap, const Epetra_Map& RangeMap, bool OptimizeDataStorage = true);
//! Make consecutive row index sections contiguous, minimize internal storage used for constructing graph.
/*! After construction and during initialization (when values are being added), the matrix coefficients
for each row are managed as separate segments of memory. This method moves the values for all rows
into one large contiguous array and eliminates internal storage that is not needed after matrix construction. Calling this
method can have a significant impact on memory costs and machine performance.
If this object was constructed in View mode then this method can't make non-contiguous values contiguous and will
return a warning code of 1 if the viewed data isn't already contiguous.
\note A call to this method will also call the OptimizeStorage method for the associated Epetra_CrsGraph object. If
the storage for this graph has already been optimized this additional call will have no effect.
\return Integer error code, set to 0 if successful.
\pre Filled()==true.
\pre If CV=View when the graph was constructed, then this method will be effective \only if the indices of the graph were already contiguous. In this case, the indices are left untouched and internal storage for the graph is minimized.
\post StorageOptimized()==true, if successful.
\post Graph().StorageOptimized()==true, if successful.
*/
int OptimizeStorage();
//! Eliminates memory that is used for construction. Make consecutive row index sections contiguous.
int MakeDataContiguous() {EPETRA_CHK_ERR(OptimizeStorage()); return(0);}
//@}
//! @name Extraction methods
//@{
//! Returns a copy of the specified global row in user-provided arrays.
/*!
\param GlobalRow - (In) Global row to extract.
\param ILength - (In) Length of Values and Indices.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\param Indices - (Out) Extracted global column indices for the corresponding values.
\return Integer error code, set to 0 if successful, non-zero if global row is not owned by calling process
or if the number of entries in this row exceed the Length parameter.
*/
int ExtractGlobalRowCopy(int GlobalRow, int Length, int& NumEntries, double* Values, int* Indices) const;
//! Returns a copy of the specified local row in user-provided arrays.
/*!
\param MyRow - (In) Local row to extract.
\param Length - (In) Length of Values and Indices.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\param Indices - (Out) Extracted local column indices for the corresponding values.
\return Integer error code, set to 0 if successful.
\pre IndicesAreLocal()==true
*/
int ExtractMyRowCopy(int MyRow, int Length, int& NumEntries, double* Values, int* Indices) const;
//! Returns a copy of the specified global row values in user-provided array.
/*!
\param GlobalRow - (In) Global row to extract.
\param Length - (In) Length of Values.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\return Integer error code, set to 0 if successful.
*/
int ExtractGlobalRowCopy(int GlobalRow, int Length, int& NumEntries, double* Values) const;
//! Returns a copy of the specified local row values in user-provided array.
/*!
\param MyRow - (In) Local row to extract.
\param Length - (In) Length of Values.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\return Integer error code, set to 0 if successful.
*/
int ExtractMyRowCopy(int MyRow, int Length, int& NumEntries, double* Values) const;
//! Returns a copy of the main diagonal in a user-provided vector.
/*!
\param Diagonal - (Out) Extracted main diagonal.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int ExtractDiagonalCopy(Epetra_Vector& Diagonal) const;
//! Returns a view of the specified global row values via pointers to internal data.
/*!
\param GlobalRow - (In) Global row to view.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\param Indices - (Out) Extracted global column indices for the corresponding values.
\return Integer error code, set to 0 if successful. Returns -1 of row not on this processor.
Returns -2 if matrix is not in global form (if FillComplete() has already been called).
\pre IndicesAreGlobal()==true
*/
int ExtractGlobalRowView(int GlobalRow, int& NumEntries, double*& Values, int*& Indices) const;
//! Returns a view of the specified local row values via pointers to internal data.
/*!
\param MyRow - (In) Local row to view.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\param Indices - (Out) Extracted local column indices for the corresponding values.
\return Integer error code, set to 0 if successful. Returns -1 of row not on this processor.
Returns -2 if matrix is not in local form (if FillComplete() has \e not been called).
\pre IndicesAreLocal()==true
*/
int ExtractMyRowView(int MyRow, int& NumEntries, double*& Values, int*& Indices) const;
//! Returns a view of the specified global row values via pointers to internal data.
/*!
\param GlobalRow - (In) Global row to extract.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\return Integer error code, set to 0 if successful.
*/
int ExtractGlobalRowView(int GlobalRow, int& NumEntries, double*& Values) const;
//! Returns a view of the specified local row values via pointers to internal data.
/*!
\param MyRow - (In) Local row to extract.
\param NumEntries - (Out) Number of nonzero entries extracted.
\param Values - (Out) Extracted values for this row.
\return Integer error code, set to 0 if successful.
*/
int ExtractMyRowView(int MyRow, int& NumEntries, double*& Values) const;
//@}
//! @name Computational methods
//@{
//! Returns the result of a Epetra_CrsMatrix multiplied by a Epetra_Vector x in y.
/*!
\param TransA - (In) If true, multiply by the transpose of matrix, otherwise just use matrix.
\param x - (In) An Epetra_Vector to multiply by.
\param y - (Out) An Epetra_Vector containing result.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int Multiply(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const;
int Multiply1(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const;
//! Returns the result of a Epetra_CrsMatrix multiplied by a Epetra_MultiVector X in Y.
/*!
\param TransA - (In) If true, multiply by the transpose of matrix, otherwise just use matrix.
\param X - (In) An Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param Y - (Out) An Epetra_MultiVector of dimension NumVectorscontaining result.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
int Multiply1(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the result of a local solve using the Epetra_CrsMatrix on a Epetra_Vector x in y.
/*! This method solves a triangular system of equations asynchronously on each processor.
\param Upper - (In) If true, solve Uy = x, otherwise solve Ly = x.
\param Trans - (In) If true, solve transpose problem.
\param UnitDiagonal - (In) If true, assume diagonal is unit (whether it's stored or not).
\param x - (In) An Epetra_Vector to solve for.
\param y - (Out) An Epetra_Vector containing result.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_Vector& x, Epetra_Vector& y) const;
//! Returns the result of a local solve using the Epetra_CrsMatrix a Epetra_MultiVector X in Y.
/*! This method solves a triangular system of equations asynchronously on each processor.
\param Upper - (In) If true, solve Uy = x, otherwise solve Ly = x.
\param Trans - (In) If true, solve transpose problem.
\param UnitDiagonal - (In) If true, assume diagonal is unit (whether it's stored or not).
\param X - (In) An Epetra_MultiVector of dimension NumVectors to solve for.
\param Y - (Out) An Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Computes the inverse of the sum of absolute values of the rows of the Epetra_CrsMatrix, results returned in x.
/*! The vector x will return such that x[i] will contain the inverse of the sum of the absolute values of the entries in the
ith row of the \e this matrix. Using the resulting vector from this function as input to LeftScale()
will make the infinity norm of the resulting matrix exactly 1.
\warning The NormInf() method will not properly calculate the infinity norm for a matrix that has entries that are
replicated on multiple processors. In this case, if the rows are fully replicated, NormInf() will return a
value equal to the maximum number of processors that any individual row of the matrix is replicated on.
\param x - (Out) An Epetra_Vector containing the inverse of the row sums of the \e this matrix.
\warning When rows are fully replicated on multiple processors, it is assumed that the distribution of x is
the same as the rows (RowMap())of \e this. When multiple processors contain partial sums for individual entries, the
distribution of x is assumed to be the same as the RangeMap() of \e this. When each row of \e this is
uniquely owned, the distribution of x can be that of the RowMap() or the RangeMap().
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int InvRowSums(Epetra_Vector& x) const;
//! Computes the inverse of the max of absolute values of the rows of the Epetra_CrsMatrix, results returned in x.
/*! The vector x will return such that x[i] will contain the inverse of max of the absolute values of the entries in the ith
row of the \e this matrix.
\warning This method will not work when multiple processors contain partial sums for individual entries.
\param x - (Out) An Epetra_Vector containing the inverse of the row maxs of the \e this matrix.
\warning When rows are fully replicated on multiple processors, it is assumed that the distribution of x is
the same as the rows (RowMap())of \e this. When each row of \e this is uniquely owned, the distribution of
x can be that of the RowMap() or the RangeMap().
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int InvRowMaxs(Epetra_Vector& x) const;
//! Scales the Epetra_CrsMatrix on the left with a Epetra_Vector x.
/*! The \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the row number of A
and j denotes the column number of A.
\param x - (In) An Epetra_Vector to scale with.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post The matrix will be scaled as described above.
*/
int LeftScale(const Epetra_Vector& x);
//! Computes the inverse of the sum of absolute values of the columns of the Epetra_CrsMatrix, results returned in x.
/*! The vector x will return such that x[j] will contain the inverse of the sum of the absolute values of the
entries in the jth column of the \e this matrix. Using the resulting vector from this function as input to
RightScale() will make the one norm of the resulting matrix exactly 1.
\warning The NormOne() method will not properly calculate the one norm for a matrix that has entries that are
replicated on multiple processors. In this case, if the columns are fully replicated, NormOne() will return a
value equal to the maximum number of processors that any individual column of the matrix is repliated on.
\param x - (Out) An Epetra_Vector containing the column sums of the \e this matrix.
\warning When columns are fully replicated on multiple processors, it is assumed that the distribution of x is
the same as the columns (ColMap()) of \e this. When multiple processors contain partial sums for entries, the
distribution of x is assumed to be the same as the DomainMap() of \e this. When each column of \e this is
uniquely owned, the distribution of x can be that of the ColMap() or the DomainMap().
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int InvColSums(Epetra_Vector& x) const;
//! Computes the max of absolute values of the columns of the Epetra_CrsMatrix, results returned in x.
/*! The vector x will return such that x[j] will contain the inverse of max of the absolute values of the entries
in the jth row of the \e this matrix.
\warning This method will not work when multiple processors contain partial sums for individual entries.
\param x - (Out) An Epetra_Vector containing the column maxs of the \e this matrix.
\warning When columns are fully replicated on multiple processors, it is assumed that the distribution of x is
the same as the columns (ColMap()) of \e this. When each column of \e this is
uniquely owned, the distribution of x can be that of the ColMap() or the DomainMap().
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int InvColMaxs(Epetra_Vector& x) const;
//! Scales the Epetra_CrsMatrix on the right with a Epetra_Vector x.
/*! The \e this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A.
\param x - (In) The Epetra_Vector used for scaling \e this.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post The matrix will be scaled as described above.
*/
int RightScale(const Epetra_Vector& x);
//@}
//! @name Matrix Properties Query Methods
//@{
//! If FillComplete() has been called, this query returns true, otherwise it returns false.
bool Filled() const {return(Graph_.Filled());}
//! If OptimizeStorage() has been called, this query returns true, otherwise it returns false.
bool StorageOptimized() const {return(StorageOptimized_);}
//! If matrix indices has not been transformed to local, this query returns true, otherwise it returns false.
bool IndicesAreGlobal() const {return(Graph_.IndicesAreGlobal());}
//! If matrix indices has been transformed to local, this query returns true, otherwise it returns false.
bool IndicesAreLocal() const {return(Graph_.IndicesAreLocal());}
//! If matrix indices are packed into single array (done in OptimizeStorage()) return true, otherwise false.
bool IndicesAreContiguous() const {return(Graph_.IndicesAreContiguous());}
//! If matrix is lower triangular in local index space, this query returns true, otherwise it returns false.
bool LowerTriangular() const {return(Graph_.LowerTriangular());}
//! If matrix is upper triangular in local index space, this query returns true, otherwise it returns false.
bool UpperTriangular() const {return(Graph_.UpperTriangular());}
//! If matrix has no diagonal entries in global index space, this query returns true, otherwise it returns false.
bool NoDiagonal() const {return(Graph_.NoDiagonal());}
//@}
//! @name Atribute access functions
//@{
//! Returns the infinity norm of the global matrix.
/* Returns the quantity \f$ \| A \|_\infty\f$ such that
\f[\| A \|_\infty = \max_{1\lei\lem} \sum_{j=1}^n |a_{ij}| \f]
\warning The NormInf() method will not properly calculate the infinity norm for a matrix that has entries that are
replicated on multiple processors. */
double NormInf() const;
//! Returns the one norm of the global matrix.
/* Returns the quantity \f$ \| A \|_1\f$ such that
\f[\| A \|_1= \max_{1\lej\len} \sum_{i=1}^m |a_{ij}| \f].
\warning The NormOne() method will not properly calculate the one norm for a matrix that has entries that are
replicated on multiple processors.
*/
double NormOne() const;
//! Returns the frobenius norm of the global matrix.
/* Returns the quantity \f[ \| A \|_{Frobenius} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n\|a_{ij}\|^2}\f]
\warning the NormFrobenius() method will not properly calculate the frobenius norm for a matrix that
has entries which are replicated on multiple processors. In that case, the returned
norm will be larger than the true norm.
*/
double NormFrobenius() const;
//! Returns the number of nonzero entries in the global matrix.
/*
Note that if maps are defined such that some nonzeros appear on
multiple processors, then those nonzeros will be counted multiple times.
If the user wishes to assemble a matrix from overlapping submatrices,
they can use Epetra_FECrsMatrix.
*/
int NumGlobalNonzeros() const {return(Graph_.NumGlobalNonzeros());}
//! Returns the number of global matrix rows.
int NumGlobalRows() const {return(Graph_.NumGlobalRows());}
//! Returns the number of global matrix columns.
int NumGlobalCols() const {return(Graph_.NumGlobalCols());}
//! Returns the number of global nonzero diagonal entries, based on global row/column index comparisons.
int NumGlobalDiagonals() const {return(Graph_.NumGlobalDiagonals());}
//! Returns the number of nonzero entries in the calling processor's portion of the matrix.
int NumMyNonzeros() const {return(Graph_.NumMyNonzeros());}
//! Returns the number of matrix rows owned by the calling processor.
int NumMyRows() const {return(Graph_.NumMyRows());}
//! Returns the number of entries in the set of column-indices that appear on this processor.
/*! The set of column-indices that appear on this processor is the union of column-indices that
appear in all local rows. The size of this set isn't available until FillComplete() has been called.
\pre Filled()==true
*/
int NumMyCols() const {return(Graph_.NumMyCols());}
//! Returns the number of local nonzero diagonal entries, based on global row/column index comparisons.
/*!
\pre Filled()==true
*/
int NumMyDiagonals() const {return(Graph_.NumMyDiagonals());}
//! Returns the current number of nonzero entries in specified global row on this processor.
int NumGlobalEntries(int Row) const {return(Graph_.NumGlobalIndices(Row));}
//! Returns the allocated number of nonzero entries in specified global row on this processor.
int NumAllocatedGlobalEntries(int Row) const{return(Graph_.NumAllocatedGlobalIndices(Row));}
//! Returns the maximum number of nonzero entries across all rows on this processor.
/*!
\pre Filled()==true
*/
int MaxNumEntries() const {return(Graph_.MaxNumIndices());}
//! Returns the maximum number of nonzero entries across all rows on all processors.
/*!
\pre Filled()==true
*/
int GlobalMaxNumEntries() const {return(Graph_.GlobalMaxNumIndices());}
//! Returns the current number of nonzero entries in specified local row on this processor.
int NumMyEntries(int Row) const {return(Graph_.NumMyIndices(Row));}
//! Returns the allocated number of nonzero entries in specified local row on this processor.
int NumAllocatedMyEntries(int Row) const {return(Graph_.NumAllocatedMyIndices(Row));}
//! Returns the index base for row and column indices for this graph.
int IndexBase() const {return(Graph_.IndexBase());}
//! Returns true if the graph associated with this matrix was pre-constructed and therefore not changeable.
bool StaticGraph() {return(StaticGraph_);}
//! Returns a reference to the Epetra_CrsGraph object associated with this matrix.
const Epetra_CrsGraph& Graph() const {return(Graph_);}
//! Returns the Epetra_Map object associated with the rows of this matrix.
const Epetra_Map& RowMap() const {return((Epetra_Map &)Graph_.RowMap());}
//! Replaces the current RowMap with the user-specified map object.
/** Replaces the current RowMap with the user-specified map object, but only
if currentmap->PointSameAs(newmap) is true. This is a collective function.
Returns 0 if map is replaced, -1 if not.
\pre RowMap().PointSameAs(newmap)==true
*/
int ReplaceRowMap(const Epetra_BlockMap& newmap);
//! Returns true if we have a well-defined ColMap, and returns false otherwise.
/*! \pre We have a well-defined ColMap if a) a ColMap was passed in at construction,
or b) the MakeColMap function has been called. (Calling either of the FillComplete functions
will result in MakeColMap being called.)
*/
bool HaveColMap() const {return(Graph_.HaveColMap());}
//! Replaces the current ColMap with the user-specified map object.
/** Replaces the current ColMap with the user-specified map object, but only
if currentmap->PointSameAs(newmap) is true. This is a collective function.
Returns 0 if map is replaced, -1 if not.
\pre ColMap().PointSameAs(newmap)==true
*/
int ReplaceColMap(const Epetra_BlockMap& newmap);
//! Returns the Epetra_Map object that describes the set of column-indices that appear in each processor's locally owned matrix rows.
/*!Note that if the matrix was constructed with only a row-map, then until FillComplete() is called, this method returns
a column-map that is a copy of the row-map. That 'initial' column-map is replaced with a computed column-map (that
contains the set of column-indices appearing in each processor's local portion of the matrix) when FillComplete() is
called.
\pre HaveColMap()==true
*/
const Epetra_Map& ColMap() const {return((Epetra_Map &) Graph_.ColMap());}
//! Returns the Epetra_Map object associated with the domain of this matrix operator.
/*!
\pre Filled()==true
*/
const Epetra_Map& DomainMap() const {return((Epetra_Map &)Graph_.DomainMap());}
//! Returns the Epetra_Map object associated with the range of this matrix operator.
/*!
\pre Filled()==true
*/
const Epetra_Map& RangeMap() const {return((Epetra_Map &)Graph_.RangeMap());}
//! Returns the Epetra_Import object that contains the import operations for distributed operations.
const Epetra_Import* Importer() const {return(Graph_.Importer());}
//! Returns the Epetra_Export object that contains the export operations for distributed operations.
const Epetra_Export* Exporter() const {return(Graph_.Exporter());}
//! Returns a pointer to the Epetra_Comm communicator associated with this matrix.
const Epetra_Comm& Comm() const {return(Epetra_DistObject::Comm());}
//@}
//! @name Local/Global ID methods
//@{
//! Returns the local row index for given global row index, returns -1 if no local row for this global row.
int LRID( int GRID_in) const {return(Graph_.LRID(GRID_in));}
//! Returns the global row index for give local row index, returns IndexBase-1 if we don't have this local row.
int GRID( int LRID_in) const {return(Graph_.GRID(LRID_in));}
//! Returns the local column index for given global column index, returns -1 if no local column for this global column.
/*!
\pre HaveColMap()==true (If HaveColMap()==false, returns -1)
*/
int LCID( int GCID_in) const {return(Graph_.LCID(GCID_in));}
//! Returns the global column index for give local column index, returns IndexBase-1 if we don't have this local column.
/*!
\pre HaveColMap()==true (If HaveColMap()==false, returns -1)
*/
int GCID( int LCID_in) const {return(Graph_.GCID(LCID_in));}
//! Returns true if the GRID passed in belongs to the calling processor in this map, otherwise returns false.
bool MyGRID(int GRID_in) const {return(Graph_.MyGRID(GRID_in));}
//! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
bool MyLRID(int LRID_in) const {return(Graph_.MyLRID(LRID_in));}
//! Returns true if the GCID passed in belongs to the calling processor in this map, otherwise returns false.
/*!
\pre HaveColMap()==true (If HaveColMap()==false, returns -1)
*/
bool MyGCID(int GCID_in) const {return(Graph_.MyGCID(GCID_in));}
//! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
/*!
\pre HaveColMap()==true (If HaveColMap()==false, returns -1)
*/
bool MyLCID(int LCID_in) const {return(Graph_.MyLCID(LCID_in));}
//! Returns true of GID is owned by the calling processor, otherwise it returns false.
bool MyGlobalRow(int GID) const {return(Graph_.MyGlobalRow(GID));}
//@}
//! @name I/O Methods
//@{
//! Print method
virtual void Print(ostream& os) const;
//@}
//! @name Additional methods required to support the Epetra_Operator interface
//@{
//! Returns a character string describing the operator
const char* Label() const {return(Epetra_Object::Label());}
//! If set true, transpose of this operator will be applied.
/*! This flag allows the transpose of the given operator to be used implicitly. Setting this flag
affects only the Apply() and ApplyInverse() methods. If the implementation of this interface
does not support transpose use, this method should return a value of -1.
\param UseTranspose - (In) If true, multiply by the transpose of operator, otherwise just use operator.
\return Always returns 0.
*/
int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);}
//! Returns the result of a Epetra_Operator applied to a Epetra_MultiVector X in Y.
/*!
\param X - (In) An Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param Y -(Out) An Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
return(Epetra_CrsMatrix::Multiply(Epetra_CrsMatrix::UseTranspose(), X, Y));}
//! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
/*! In this implementation, we use several existing attributes to determine how virtual
method ApplyInverse() should call the concrete method Solve(). We pass in the UpperTriangular(),
the Epetra_CrsMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
be accounted for when doing a triangular solve.
\param X - (In) An Epetra_MultiVector of dimension NumVectors to solve for.
\param Y - (Out) An Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
\pre Filled()==true
\post Unchanged.
*/
int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
return(Solve(UpperTriangular(), Epetra_CrsMatrix::UseTranspose(), NoDiagonal(), X, Y));}
//! Returns true because this class can compute an Inf-norm.
bool HasNormInf() const {return(true);}
//! Returns the current UseTranspose setting.
bool UseTranspose() const {return(UseTranspose_);}
//! Returns the Epetra_Map object associated with the domain of this matrix operator.
const Epetra_Map& OperatorDomainMap() const
{
if (UseTranspose()) return(RangeMap());
else return(DomainMap());
}
//! Returns the Epetra_Map object associated with the range of this matrix operator.
const Epetra_Map& OperatorRangeMap() const
{
if (UseTranspose()) return(DomainMap());
else return(RangeMap());
}
//@}
//! @name Additional methods required to implement Epetra_RowMatrix interface
//@{
//! Return the current number of values stored for the specified local row.
/*! Similar to NumMyEntries() except NumEntries is returned as an argument
and error checking is done on the input value MyRow.
\param MyRow - (In) Local row.
\param NumEntries - (Out) Number of nonzero values.
\return Integer error code, set to 0 if successful.
\pre None.
\post Unchanged.
*/
int NumMyRowEntries(int MyRow, int& NumEntries) const;
//! Map() method inherited from Epetra_DistObject
const Epetra_BlockMap& Map() const { return Epetra_DistObject::Map(); }
//! Returns the Epetra_Map object associated with the rows of this matrix.
const Epetra_Map& RowMatrixRowMap() const {return(RowMap());}
//! Returns the Epetra_Map object associated with columns of this matrix.
const Epetra_Map& RowMatrixColMap() const {return(ColMap());}
//! Returns the Epetra_Import object that contains the import operations for distributed operations.
const Epetra_Import* RowMatrixImporter() const {return(Importer());}
//@}
//! @name Inlined Operator Methods
//@{
//! Inlined bracket operator for fast access to data. (Const and Non-const versions)
/*! No error checking and dangerous for optimization purposes.
\param Loc - (In) Local row.
\return reference to pointer to locally indexed Loc row in matrix.
*/
inline double* operator[] (int Loc) {
if (StorageOptimized()){ int * ind = Graph().IndexOffset(); return(All_Values_+ind[Loc]);}
else return Values_[Loc];}
inline double* operator[] (int Loc) const {
if (StorageOptimized()){ int * ind = Graph().IndexOffset(); return(All_Values_+ind[Loc]);}
else return Values_[Loc];}
//@}
//! @name Expert-only methods: These methods are intended for experts only and have some risk of changing in the future, since they rely on underlying data structure assumptions
//@{
//! Returns internal data pointers associated with Crs matrix format.
/*! Returns data pointers to facilitate optimized code within external packages.
\param IndexOffset - (Out) Extracted array of indices into Values[] and Indices[]. Local
row k is stored in Values[IndexOffset[k]:IndexOffset[k+1]-1] and
Indices[IndexOffset[k]:IndexOffset[k+1]-1].
\param Values - (Out) Extracted values for all local rows.
\param Indices - (Out) Extracted local column indices for the corresponding values.
\return Integer error code, set to 0 if successful. Returns -1 if FillComplete has not been
performed or Storage has not been Optimized.
\warning This method is intended for expert only, its use may require user code modifications in future versions of Epetra.
*/
int ExtractCrsDataPointers(int *& IndexOffset, int *& Indices, double *& Values_in) const {
if (StorageOptimized()) {
IndexOffset = Graph().IndexOffset();
Indices = Graph().All_Indices();
Values_in = All_Values();
return (0);
}
else { IndexOffset = 0; Indices = 0; Values_in = 0; return (-1);} }
//! Forces FillComplete() to locally order ghostnodes associated with each remote processor in ascending order.
/*! To be compliant with AztecOO, FillComplete() already locally orders ghostnodes such that
information received from processor k has a lower local numbering than information received
from processor j if k is less than j. SortGhostsAssociatedWithEachProcessor(True) further
forces FillComplete() to locally number all ghostnodes received from processor k in ascending
order. That is, the local numbering of b is less than c if the global numbering of b is less
than c and if both b and c are owned by the same processor. This is done to be compliant with
some limited block features within ML. In particular, some ML features require that a block
structure of the matrix be maintained even within the ghost variables. Always returns 0.
*/
int SortGhostsAssociatedWithEachProcessor(bool Flag) {Graph_.SortGhostsAssociatedWithEachProcessor(Flag); return(0);}
//@}
//! @name Deprecated methods: These methods still work, but will be removed in a future version
//@{
//! Use ColMap() instead.
const Epetra_Map& ImportMap() const {return((Epetra_Map&) Graph_.ImportMap());}
//! Use FillComplete() instead.
int TransformToLocal();
//! Use FillComplete(const Epetra_Map& DomainMap, const Epetra_Map& RangeMap) instead.
int TransformToLocal(const Epetra_Map* DomainMap, const Epetra_Map* RangeMap);
//@}
protected:
bool Allocated() const {return(Allocated_);}
int SetAllocated(bool Flag) {Allocated_ = Flag; return(0);}
double** Values() const {
if (StorageOptimized()) throw ReportError("This method: double** Values() cannot be called when StorageOptimized()==true", -1);
else return(Values_);}
double* All_Values() const {
if (!StorageOptimized()) throw ReportError("This method: double* All_Values()cannot be called when StorageOptimized()==false", -1);
else return(All_Values_);}
double* Values(int LocalRow) const {
if (StorageOptimized())
if (Graph().StorageOptimized())
return(All_Values_+Graph().IndexOffset()[LocalRow]);
else throw ReportError("This method: double* Values()cannot be called when StorageOptimized()==true and Graph().StorageOptimized()==false", -1);
else return(Values_[LocalRow]);}
void InitializeDefaults();
int Allocate();
int InsertValues(int LocalRow, int NumEntries, double* Values, int* Indices);
int InsertValues(int LocalRow, int NumEntries, const double* Values, const int* Indices);
int InsertOffsetValues(int GlobalRow, int NumEntries, double *Values, int *Indices);
int InsertOffsetValues(int GlobalRow, int NumEntries, const double *Values, const int *Indices);
int ReplaceOffsetValues(int GlobalRow, int NumEntries, const double *Values, const int *Indices);
int SumIntoOffsetValues(int GlobalRow, int NumEntries, const double *Values, const int *Indices);
void UpdateImportVector(int NumVectors) const;
void UpdateExportVector(int NumVectors) const;
void GeneralMV(double * x, double * y) const;
void GeneralMTV(double * x, double * y) const;
void GeneralMM(double ** X, int LDX, double ** Y, int LDY, int NumVectors) const;
void GeneralMTM(double ** X, int LDX, double ** Y, int LDY, int NumVectors) const;
void GeneralSV(bool Upper, bool Trans, bool UnitDiagonal, double * x, double * y) const;
void GeneralSM(bool Upper, bool Trans, bool UnitDiagonal, double ** X, int LDX, double ** Y, int LDY, int NumVectors) const;
void SetStaticGraph(bool Flag) {StaticGraph_ = Flag;}
int CheckSizes(const Epetra_SrcDistObject& A);
int CopyAndPermute(const Epetra_SrcDistObject& Source,
int NumSameIDs,
int NumPermuteIDs,
int* PermuteToLIDs,
int* PermuteFromLIDs,
const Epetra_OffsetIndex * Indexor);
int CopyAndPermuteCrsMatrix(const Epetra_CrsMatrix& A,
int NumSameIDs,
int NumPermuteIDs,
int* PermuteToLIDs,
int* PermuteFromLIDs,
const Epetra_OffsetIndex * Indexor);
int CopyAndPermuteRowMatrix(const Epetra_RowMatrix& A,
int NumSameIDs,
int NumPermuteIDs,
int* PermuteToLIDs,
int* PermuteFromLIDs,
const Epetra_OffsetIndex * Indexor);
int PackAndPrepare(const Epetra_SrcDistObject& Source,
int NumExportIDs,
int* ExportLIDs,
int& LenExports,
char*& Exports,
int& SizeOfPacket,
int* Sizes,
bool& VarSizes,
Epetra_Distributor& Distor);
int UnpackAndCombine(const Epetra_SrcDistObject& Source,
int NumImportIDs,
int* ImportLIDs,
int LenImports,
char* Imports,
int& SizeOfPacket,
Epetra_Distributor& Distor,
Epetra_CombineMode CombineMode,
const Epetra_OffsetIndex * Indexor);
//! Sort column entries, row-by-row, in ascending order.
int SortEntries();
//! If SortEntries() has been called, this query returns true, otherwise it returns false.
bool Sorted() const {return(Graph_.Sorted());}
//! Add entries that have the same column index. Remove redundant entries from list.
int MergeRedundantEntries();
//! If MergeRedundantEntries() has been called, this query returns true, otherwise it returns false.
bool NoRedundancies() const {return(Graph_.NoRedundancies());}
void DeleteMemory();
Epetra_CrsGraph Graph_;
bool Allocated_;
bool StaticGraph_;
bool UseTranspose_;
bool constructedWithFilledGraph_;
bool matrixFillCompleteCalled_;
bool StorageOptimized_;
double** Values_;
double* All_Values_;
mutable double NormInf_;
mutable double NormOne_;
mutable double NormFrob_;
int NumMyRows_;
mutable Epetra_MultiVector* ImportVector_;
mutable Epetra_MultiVector* ExportVector_;
Epetra_DataAccess CV_;
bool squareFillCompleteCalled_;
private:
// These are the pre-5.0 versions of solve. They are still faster that generic 5.0 solves, so we keep them around
int Solve1(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_Vector& x, Epetra_Vector& y) const;
int Solve1(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
};
#endif /* EPETRA_CRSMATRIX_H */
|