This file is indexed.

/usr/include/trilinos/Epetra_CrsMatrix.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
//@HEADER
/*
************************************************************************

              Epetra: Linear Algebra Services Package 
                Copyright (2001) Sandia Corporation

Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the U.S. Government.

This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
 
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.
 
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
Questions? Contact Michael A. Heroux (maherou@sandia.gov) 

************************************************************************
*/
//@HEADER

#ifndef EPETRA_CRSMATRIX_H
#define EPETRA_CRSMATRIX_H

#include "Epetra_ConfigDefs.h"
#include "Epetra_DistObject.h" 
#include "Epetra_CompObject.h" 
#include "Epetra_BLAS.h"
#include "Epetra_RowMatrix.h"
#include "Epetra_Operator.h"
#include "Epetra_CrsGraph.h"
class Epetra_Map;
class Epetra_Import;
class Epetra_Export;
class Epetra_Vector;
class Epetra_MultiVector;

// Define this to see a complete dump a an Epetra_CrsMatrix::Multiply(...) call
//#define EPETRA_CRS_MATRIX_TRACE_DUMP_MULTIPLY

#ifdef EPETRA_CRS_MATRIX_TRACE_DUMP_MULTIPLY
extern bool Epetra_CrsMatrixTraceDumpMultiply;
#endif // EPETRA_CRS_MATRIX_TRACE_DUMP_MULTIPLY

//! Epetra_CrsMatrix: A class for constructing and using real-valued double-precision sparse compressed row matrices.

/*! The Epetra_CrsMatrix class is a sparse compressed row matrix object. This matrix can be
  used in a parallel setting, with data distribution described by Epetra_Map attributes.
  The structure or graph of the matrix is defined by an Epetra_CrsGraph attribute.
 
 In addition to coefficient access, the primary operations provided by Epetra_CrsMatrix are matrix
 times vector and matrix times multi-vector multiplication.

 Epetra_CrsMatrix matrices can be square or rectangular.

<b>Creating and filling Epetra_CrsMatrix objects</b>

Constructing Epetra_CrsMatrix objects is a multi-step process.  The basic steps are as follows:
<ol>
  <li> Create Epetra_CrsMatrix instance, including storage, via one of the constructors:
    <ul>
     <li>Constructor that accepts one Epetra_Map object, a row-map defining the distribution of matrix rows.
     <li>Constructor that accepts two Epetra_Map objects. (The second map is a column-map, and describes the set
       of column-indices that appear in each processor's portion of the matrix. Generally these are 
       overlapping sets -- column-indices may appear on more than one processor.)
     <li>Constructor that accepts an Epetra_CrsGraph object, defining the non-zero structure of the matrix.
    </ul>
  Note that the constructors which accept Epetra_Map arguments also accept an argument that gives an
  estimate of the number of nonzeros per row. This allows storage to be pre-allocated and can improve
  the performance of the data input methods. The estimate need not be accurate, as additional storage is
  allocated automatically when needed. However, a more accurate estimate helps performance by reducing
  the amount of extra memory allocation.
  <li> Enter values via one or more Insert/Replace/SumInto functions.
  <li> Complete construction by calling FillComplete.
</ol>

Note that, even after a matrix is constructed (FillComplete has been called), it is possible to update existing
matrix entries.  It is \e not possible to create new entries.

<b>Epetra_Map attributes</b>

Epetra_CrsMatrix objects have four Epetra_Map attributes, which are held by the Epetra_CrsGraph attribute.

The Epetra_Map attributes can be obtained via these accessor methods:
<ul>
 <li>RowMap() Describes the numbering and distribution of the rows of the matrix. The row-map exists and is valid
 for the entire life of the matrix. The set of matrix rows is defined by the row-map and may not be changed. Rows
 may not be inserted or deleted by the user. The only change that may be made is that the user can replace the
 row-map with a compatible row-map (which is the same except for re-numbering) by calling the ReplaceRowMap() method.
 <li>ColMap() Describes the set of column-indices that appear in the rows in each processor's portion of the matrix.
 Unless provided by the user at construction time, a valid column-map doesn't exist until FillComplete() is called.
 <li>RangeMap() Describes the range of the matrix operator. e.g., for a matrix-vector product operation, the result
   vector's map must be compatible with the range-map of this matrix. The range-map is usually the same as the row-map.
   The range-map is set equal to the row-map at matrix creation time, but may be specified by the user when
   FillComplete() is called.
 <li>DomainMap() Describes the domain of the matrix operator. The domain-map can be specified by the user when
 FillComplete() is called. Until then, it is set equal to the row-map.
</ul>

It is important to note that while the row-map and the range-map are often the same, the column-map and the domain-map
are almost never the same. The set of entries in a distributed column-map almost always form overlapping sets, with
entries being associated with more than one processor. A domain-map, on the other hand, must be a 1-to-1 map, with
entries being associated with only a single processor.

<b>Local versus Global Indices</b>

Epetra_CrsMatrix has query functions IndicesAreLocal() and IndicesAreGlobal(), which are used to determine whether the
underlying Epetra_CrsGraph attribute's column-indices have been transformed into a local index space or not. (This
transformation occurs when the method Epetra_CrsGraph::FillComplete() is called, which happens when the
method Epetra_CrsMatrix::FillComplete() is called.) The state of the indices in the
graph determines the behavior of many Epetra_CrsMatrix methods. If an Epetra_CrsMatrix instance is constructed using
one of the constructors that does not accept a pre-existing Epetra_CrsGraph object, then an Epetra_CrsGraph attribute
is created internally and its indices remain untransformed (IndicesAreGlobal()==true) until Epetra_CrsMatrix::FillComplete()
is called. The query function Epetra_CrsMatrix::Filled() returns true if Epetra_CrsMatrix::FillComplete() has been
called.

Note the following method characteristics:

<ul>
 <li>InsertGlobalValues() may only be used to insert new nonzeros in the matrix if indices are global.
 <li>SumIntoGlobalValues() may be used regardless of whether indices are global or local, but can only be used
  to update matrix locations that already exist; it can never be used to establish new nonzero locations.
 <li>ReplaceGlobalValues() may also be used only to update matrix locations that already exist, and works
  regardless of whether indices are local or global.
 <li>SumIntoMyValues() and ReplaceMyValues() may only be used if indices are local.
 <li>Multiply() may only be used after FillComplete() has been called.
</ul>

Most methods have preconditions documented, check documentation for specific methods not mentioned here.

<b> Counting Floating Point Operations </b>

Each Epetra_CrsMatrix object keeps track of the number
of \e serial floating point operations performed using the specified object as the \e this argument
to the function.  The Flops() function returns this number as a double precision number.  Using this 
information, in conjunction with the Epetra_Time class, one can get accurate parallel performance
numbers.  The ResetFlops() function resets the floating point counter.

\warning A Epetra_Map is required for the Epetra_CrsMatrix constructor.

*/    

class EPETRA_LIB_DLL_EXPORT Epetra_CrsMatrix: public Epetra_DistObject, public Epetra_CompObject, public Epetra_BLAS, public virtual Epetra_RowMatrix {
 public:

   //! @name Constructors/Destructor
  //@{ 
  //! Epetra_CrsMatrix constructor with variable number of indices per row.
  /*! Creates a Epetra_CrsMatrix object and allocates storage.  
    
  \param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
  \param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
  \param NumEntriesPerRow - (In) An integer array of length NumRows
  such that NumEntriesPerRow[i] indicates the (approximate if StaticProfile=false) number of entries in the ith row.
  \param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
  count of nonzeros, or should be used as an approximation.  By default this value is false, allowing the profile to be determined 
  dynamically.  If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
  block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
  */
  Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, const int* NumEntriesPerRow, bool StaticProfile = false);
  
  //! Epetra_CrsMatrix constructor with fixed number of indices per row.
  /*! Creates a Epetra_CrsMatrix object and allocates storage.  
    
  \param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
  \param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
  \param NumEntriesPerRow - (In) An integer that indicates the (approximate) number of entries in the each row.
  Note that it is possible to use 0 for this value and let fill occur during the insertion phase.
  \param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
  count of nonzeros, or should be used as an approximation.  By default this value is false, allowing the profile to be determined 
  dynamically.  If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
  block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
	
  */
  Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, int NumEntriesPerRow, bool StaticProfile = false);

  //! Epetra_CrsMatrix constructor with variable number of indices per row.
  /*! Creates a Epetra_CrsMatrix object and allocates storage.  
    
  \param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
  \param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
  \param ColMap - (In) An Epetra_Map defining the set of column-indices that appear in each processor's
  locally owned matrix rows.
  \param NumEntriesPerRow - (In) An integer array of length NumRows
  such that NumEntriesPerRow[i] indicates the (approximate if StaticProfile=false) number of entries in the ith row.
  \param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
  count of nonzeros, or should be used as an approximation.  By default this value is false, allowing the profile to be determined 
  dynamically.  If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
  block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
  */
  Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, const Epetra_Map& ColMap, const int* NumEntriesPerRow, bool StaticProfile = false);
  
  //! Epetra_CrsMatrix constuctor with fixed number of indices per row.
  /*! Creates a Epetra_CrsMatrix object and allocates storage.  
    
  \param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
  \param RowMap - (In) An Epetra_Map defining the numbering and distribution of matrix rows.
  \param ColMap - (In) An Epetra_Map defining the set of column-indices that appear in each processor's
  locally owned matrix rows.
  \param NumEntriesPerRow - (In) An integer that indicates the (approximate if StaticProfile=false) number of entries in the each row.
  Note that it is possible to use 0 for this value and let fill occur during the insertion phase.
  \param StaticProfile - (In) Optional argument that indicates whether or not NumIndicesPerRow should be interpreted as an exact
  count of nonzeros, or should be used as an approximation.  By default this value is false, allowing the profile to be determined 
  dynamically.  If the user sets it to true, then the memory allocation for the Epetra_CrsGraph object will be done in one large
  block, saving on memory fragmentation and generally improving the performance of matrix multiplication and solve kernels.
  
  */
  Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_Map& RowMap, const Epetra_Map& ColMap, int NumEntriesPerRow, bool StaticProfile = false);

  //! Construct a matrix using an existing Epetra_CrsGraph object.
  /*! Allows the nonzero structure from another matrix, or a structure that was
    constructed independently, to be used for this matrix.
    \param CV - (In) An Epetra_DataAccess enumerated type set to Copy or View.
    \param Graph - (In) A Epetra_CrsGraph object, constructed directly or extracted from another Epetra matrix object.
  */
	
  Epetra_CrsMatrix(Epetra_DataAccess CV, const Epetra_CrsGraph& Graph);
	
  //! Copy constructor.
  Epetra_CrsMatrix(const Epetra_CrsMatrix& Matrix);
	
  //! Epetra_CrsMatrix Destructor
  virtual ~Epetra_CrsMatrix();
  //@}
  
  //! @name Insertion/Replace/SumInto methods
  //@{ 

  //! Assignment operator
  Epetra_CrsMatrix& operator=(const Epetra_CrsMatrix& src);

  //! Initialize all values in the matrix with constant value.
  /*!
    \param ScalarConstant - (In) Value to use.
		
    \return Integer error code, set to 0 if successful.
    \pre None.
    \post All values in \e this set to ScalarConstant.
  */
  int PutScalar(double ScalarConstant);
	
  //! Multiply all values in the matrix by a constant value (in place: A <- ScalarConstant * A).
  /*!
    \param ScalarConstant - (In) Value to use.
		
    \return Integer error code, set to 0 if successful.
    \pre None.
    \post All values of \e this have been multiplied by ScalarConstant.
  */
  int Scale(double ScalarConstant);

  //! Insert a list of elements in a given global row of the matrix.
  /*!
    This method is used to construct a matrix for the first time.  It cannot
    be used if the matrix structure has already been fixed (via a call to FillComplete()).
    If multiple values are inserted for the same matrix entry, the values are initially
    stored separately, so memory use will grow as a result.  However, when FillComplete is called
    the values will be summed together and the additional memory will be released.

    For example, if the values 2.0, 3.0 and 4.0 are all inserted in Row 1, Column 2, extra storage
    is used to store each of the three values separately.  In this way, the insert process does not 
    require any searching and can be faster.  However, when FillComplete() is called, the values
    will be summed together to equal 9.0 and only a single entry will remain in the matrix for
    Row 1, Column 2.

    \param GlobalRow - (In) Row number (in global coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Global column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if the
    allocated length of the row has to be expanded, a positive warning code
    will be returned.

    \warning This method may not be called once FillComplete() has been called.

    \pre IndicesAreLocal()==false && IndicesAreContiguous()==false
  */
  virtual int InsertGlobalValues(int GlobalRow, int NumEntries, const double* Values, const int* Indices);
	
  //! Insert a list of elements in a given global row of the matrix.
  /*!
    This method is used to construct a matrix for the first time.  It cannot
    be used if the matrix structure has already been fixed (via a call to FillComplete()).
    If multiple values are inserted for the same matrix entry, the values are initially
    stored separately, so memory use will grow as a result.  However, when FillComplete is called
    the values will be summed together and the additional memory will be released.

    For example, if the values 2.0, 3.0 and 4.0 are all inserted in Row 1, Column 2, extra storage
    is used to store each of the three values separately.  In this way, the insert process does not 
    require any searching and can be faster.  However, when FillComplete() is called, the values
    will be summed together to equal 9.0 and only a single entry will remain in the matrix for
    Row 1, Column 2.

    \param GlobalRow - (In) Row number (in global coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Global column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if the
    allocated length of the row has to be expanded, a positive warning code
    will be returned.

    \warning This method may not be called once FillComplete() has been called.

    \pre IndicesAreLocal()==false && IndicesAreContiguous()==false
  */
  virtual int InsertGlobalValues(int GlobalRow, int NumEntries, double* Values, int* Indices);

  //! Replace specified existing values with this list of entries for a given global row of the matrix.
  /*!
    \param GlobalRow - (In) Row number (in global coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Global column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if a value
    is not already present for the specified location in the matrix, the
    input value will be ignored and a positive warning code will be returned.

    \pre IndicesAreLocal()==false && IndicesAreContiguous()==false
  */
  virtual int ReplaceGlobalValues(int GlobalRow, int NumEntries, const double* Values, const int* Indices);
	
  //! Add this list of entries to existing values for a given global row of the matrix.
  /*!
    \param GlobalRow - (In) Row number (in global coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Global column indices corresponding to values.

    \return Integer error code, set to 0 if successful. Note that if a value
    is not already present for the specified location in the matrix, the
    input value will be ignored and a positive warning code will be returned.

    \pre IndicesAreLocal()==false && IndicesAreContiguous()==false
  */
  virtual int SumIntoGlobalValues(int GlobalRow, int NumEntries, const double* Values, const int* Indices);

  //! Insert a list of elements in a given local row of the matrix.
  /*!
    \param MyRow - (In) Row number (in local coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Local column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if the
    allocated length of the row has to be expanded, a positive warning code
    will be returned.
    \pre IndicesAreGlobal()==false && (IndicesAreContiguous()==false || CV_==View)
    \post The given local row of the matrix has been updated as described above.
 
  */
  int InsertMyValues(int MyRow, int NumEntries, const double* Values, const int* Indices);

  //! Insert a list of elements in a given local row of the matrix.
  /*!
    \param MyRow - (In) Row number (in local coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Local column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if the
    allocated length of the row has to be expanded, a positive warning code
    will be returned.
    \pre IndicesAreGlobal()==false && (IndicesAreContiguous()==false || CV_==View)
    \post The given local row of the matrix has been updated as described above.
 
  */
  int InsertMyValues(int MyRow, int NumEntries, double* Values, int* Indices);

  //! Replace current values with this list of entries for a given local row of the matrix.
  /*!
    \param MyRow - (In) Row number (in local coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Local column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if a value
    is not already present for the specified location in the matrix, the
    input value will be ignored and a positive warning code will be returned.
    \pre IndicesAreLocal()==true
    \post MyRow contains the given list of Values at the given Indices.
  */
  int ReplaceMyValues(int MyRow, int NumEntries, const double* Values, const int* Indices);

  //! Add this list of entries to existing values for a given local row of the matrix.
  /*!
    \param MyRow - (In) Row number (in local coordinates) to put elements.
    \param NumEntries - (In) Number of entries.
    \param Values - (In) Values to enter.
    \param Indices - (In) Local column indices corresponding to values.
		
    \return Integer error code, set to 0 if successful. Note that if the
    allocated length of the row has to be expanded, a positive warning code
    will be returned.
    \pre IndicesAreLocal()==true
    \post The given Values at the given Indices have been summed into the
    entries of MyRow.
  */
  int SumIntoMyValues(int MyRow, int NumEntries, const double* Values, const int* Indices);

  //! Replaces diagonal values of the matrix with those in the user-provided vector.
  /*! This routine is meant to allow replacement of {\bf existing} diagonal values.
    If a diagonal value does not exist for a given row, the corresponding value in
    the input Epetra_Vector will be ignored and the return code will be set to 1.
		
    The Epetra_Map associated with the input Epetra_Vector must be compatible with
    the RowMap of the matrix.
		
    \param Diagonal - (In) New values to be placed in the main diagonal.
		
    \return Integer error code, set to 0 if successful, set to 1 on the calling processor if one or more diagonal entries not present in matrix.
    \pre Filled()==true
    \post Diagonal values have been replaced with the values of Diagonal.
  */
  int ReplaceDiagonalValues(const Epetra_Vector& Diagonal);
	
  //@}

  //! @name Transformation methods
  //@{ 
  

  //! Signal that data entry is complete.  Perform transformations to local index space.
  /* This version of FillComplete assumes that the domain and range
     distributions are identical to the matrix row distributions.
    \param OptimizeDataStorage - (In) If true, storage will be packed for optimal performance.  Depending
           on how the matrix was constructed, optimizing the storage may have no impact on performance
	   or one-time memory use, or may have a large impact.  If the user was careful in allocating memory
	   for the matrix by setting StaticProfile to true in the matrix constructor, then no extra storage
	   will be allocated in attempting to optimize storage.  If the user did not set StaticProfile to true,
	   then optimizing the storage will temporarily use additional memory, will have a noticeable impact
	   on performance and ultimately reduce the storage associated with the matrix.

	   By default storage will be optimized.  If you cannot tolerate the increased temporary memory use,
	   should set this value to false.

     \return error code, 0 if successful. Returns a positive warning code of 3
        if the matrix is rectangular (meaning that the other overloading of
        FillComplete should have been called, with differen domain-map and
        range-map specified).
  */
  int FillComplete(bool OptimizeDataStorage = true);

  //! Signal that data entry is complete.  Perform transformations to local index space.
  /* This version of FillComplete requires the explicit specification of the domain
     and range distribution maps.  These maps are used for importing and exporting vector
     and multi-vector elements that are needed for distributed matrix computations.  For
     example, to compute y = Ax in parallel, we would specify the DomainMap as the distribution
     of the vector x and the RangeMap as the distribution of the vector y.
    \param DomainMap - (In) Map that describes the distribution of vector and multi-vectors in the
		matrix domain.
    \param RangeMap - (In) Map that describes the distribution of vector and multi-vectors in the
		matrix range.

    \param OptimizeDataStorage - (In) If true, storage will be packed for optimal performance.  Depending
           on how the matrix was constructed, optimizing the storage may have no impact on performance
	   or one-time memory use, or may have a large impact.  If the user was careful in allocating memory
	   for the matrix by setting StaticProfile to true in the matrix constructor, then no extra storage
	   will be allocated in attempting to optimize storage.  If the user did not set StaticProfile to true,
	   then optimizing the storage will temporarily use additional memory, will have a noticeable impact
	   on performance and ultimately reduce the storage associated with the matrix.

	   By default storage will be optimized.  If you cannot tolerate the increased temporary memory use,
	   should set this value to false.

    \return error code, 0 if successful. positive warning code of 2 if it is detected that the
    matrix-graph got out of sync since this matrix was constructed (for instance if
    graph.FillComplete() was called by another matrix that shares the graph)

    \post IndicesAreLocal()==true
    */
  int FillComplete(const Epetra_Map& DomainMap, const Epetra_Map& RangeMap, bool OptimizeDataStorage = true);
    
  //! Make consecutive row index sections contiguous, minimize internal storage used for constructing graph.
  /*! After construction and during initialization (when values are being added), the matrix coefficients 
    for each row are managed as separate segments of memory. This method moves the values for all rows
    into one large contiguous array and eliminates internal storage that is not needed after matrix construction. Calling this
    method can have a significant impact on memory costs and machine performance.

    If this object was constructed in View mode then this method can't make non-contiguous values contiguous and will
    return a warning code of 1 if the viewed data isn't already contiguous.

    \note A call to this method will also call the OptimizeStorage method for the associated Epetra_CrsGraph object.  If
    the storage for this graph has already been optimized this additional call will have no effect.

    \return Integer error code, set to 0 if successful.

    \pre Filled()==true.
    \pre If CV=View when the graph was constructed, then this method will be effective \only if the indices of the graph were already contiguous.  In this case, the indices are left untouched and internal storage for the graph is minimized.

    \post StorageOptimized()==true, if successful.
    \post Graph().StorageOptimized()==true, if successful.

  */
  int OptimizeStorage();

	
  //! Eliminates memory that is used for construction.  Make consecutive row index sections contiguous.
  int MakeDataContiguous() {EPETRA_CHK_ERR(OptimizeStorage()); return(0);}
	//@}
	
  //! @name Extraction methods
  //@{ 
	
  //! Returns a copy of the specified global row in user-provided arrays.
  /*! 
    \param GlobalRow - (In) Global row to extract.
    \param ILength - (In) Length of Values and Indices.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
    \param Indices - (Out) Extracted global column indices for the corresponding values.
	  
    \return Integer error code, set to 0 if successful, non-zero if global row is not owned by calling process
or if the number of entries in this row exceed the Length parameter.
  */
  int ExtractGlobalRowCopy(int GlobalRow, int Length, int& NumEntries, double* Values, int* Indices) const;

  //! Returns a copy of the specified local row in user-provided arrays.
  /*! 
    \param MyRow - (In) Local row to extract.
    \param Length - (In) Length of Values and Indices.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
    \param Indices - (Out) Extracted local column indices for the corresponding values.
	  
    \return Integer error code, set to 0 if successful.

    \pre IndicesAreLocal()==true
  */
  int ExtractMyRowCopy(int MyRow, int Length, int& NumEntries, double* Values, int* Indices) const;

  //! Returns a copy of the specified global row values in user-provided array.
  /*! 
    \param GlobalRow - (In) Global row to extract.
    \param Length - (In) Length of Values.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
	  
    \return Integer error code, set to 0 if successful.
  */
  int ExtractGlobalRowCopy(int GlobalRow, int Length, int& NumEntries, double* Values) const;

	//! Returns a copy of the specified local row values in user-provided array.
	/*! 
    \param MyRow - (In) Local row to extract.
    \param Length - (In) Length of Values.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
	  
    \return Integer error code, set to 0 if successful.
  */
  int ExtractMyRowCopy(int MyRow, int Length, int& NumEntries, double* Values) const;

  //! Returns a copy of the main diagonal in a user-provided vector.
  /*! 
    \param Diagonal - (Out) Extracted main diagonal.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int ExtractDiagonalCopy(Epetra_Vector& Diagonal) const;
	
  //! Returns a view of the specified global row values via pointers to internal data.
  /*! 
    \param GlobalRow - (In) Global row to view.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
    \param Indices - (Out) Extracted global column indices for the corresponding values.
	  
    \return Integer error code, set to 0 if successful. Returns -1 of row not on this processor.  
		Returns -2 if matrix is not in global form (if FillComplete() has already been called).

    \pre IndicesAreGlobal()==true
  */
  int ExtractGlobalRowView(int GlobalRow, int& NumEntries, double*& Values, int*& Indices) const;
	
  //! Returns a view of the specified local row values via pointers to internal data.
  /*! 
    \param MyRow - (In) Local row to view.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
    \param Indices - (Out) Extracted local column indices for the corresponding values.
	  
    \return Integer error code, set to 0 if successful. Returns -1 of row not on this processor.  
		Returns -2 if matrix is not in local form (if FillComplete() has \e not been called).

    \pre IndicesAreLocal()==true
  */
  int ExtractMyRowView(int MyRow, int& NumEntries, double*& Values, int*& Indices) const;
	
  //! Returns a view of the specified global row values via pointers to internal data.
  /*! 
    \param GlobalRow - (In) Global row to extract.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
	  
    \return Integer error code, set to 0 if successful.
  */
  int ExtractGlobalRowView(int GlobalRow, int& NumEntries, double*& Values) const;

  //! Returns a view of the specified local row values via pointers to internal data.
  /*! 
    \param MyRow - (In) Local row to extract.
    \param NumEntries - (Out) Number of nonzero entries extracted.
    \param Values - (Out) Extracted values for this row.
	  
    \return Integer error code, set to 0 if successful.
  */
  int ExtractMyRowView(int MyRow, int& NumEntries, double*& Values) const;
  //@}
	
  //! @name Computational methods
  //@{ 
	
  //! Returns the result of a Epetra_CrsMatrix multiplied by a Epetra_Vector x in y.
  /*! 
    \param TransA - (In) If true, multiply by the transpose of matrix, otherwise just use matrix.
    \param x - (In) An Epetra_Vector to multiply by.
    \param y - (Out) An Epetra_Vector containing result.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int Multiply(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const;
  int Multiply1(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const;


  //! Returns the result of a Epetra_CrsMatrix multiplied by a Epetra_MultiVector X in Y.
  /*! 
    \param TransA - (In) If true, multiply by the transpose of matrix, otherwise just use matrix.
    \param X - (In) An Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Y - (Out) An Epetra_MultiVector of dimension NumVectorscontaining result.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
  int Multiply1(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

  //! Returns the result of a local solve using the Epetra_CrsMatrix on a Epetra_Vector x in y.
  /*! This method solves a triangular system of equations asynchronously on each processor.
    \param Upper - (In) If true, solve Uy = x, otherwise solve Ly = x.
    \param Trans - (In) If true, solve transpose problem.
    \param UnitDiagonal - (In) If true, assume diagonal is unit (whether it's stored or not).
    \param x - (In) An Epetra_Vector to solve for.
    \param y - (Out) An Epetra_Vector containing result.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_Vector& x, Epetra_Vector& y) const;
	
  //! Returns the result of a local solve using the Epetra_CrsMatrix a Epetra_MultiVector X in Y.
  /*! This method solves a triangular system of equations asynchronously on each processor.
    \param Upper - (In) If true, solve Uy = x, otherwise solve Ly = x.
    \param Trans - (In) If true, solve transpose problem.
    \param UnitDiagonal - (In) If true, assume diagonal is unit (whether it's stored or not).
    \param X - (In) An Epetra_MultiVector of dimension NumVectors to solve for.
    \param Y - (Out) An Epetra_MultiVector of dimension NumVectors containing result.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
	
  //! Computes the inverse of the sum of absolute values of the rows of the Epetra_CrsMatrix, results returned in x.
  /*! The vector x will return such that x[i] will contain the inverse of the sum of the absolute values of the entries in the 
	        ith row of the \e this matrix.  Using the resulting vector from this function as input to LeftScale()
                will make the infinity norm of the resulting matrix exactly 1.
                \warning The NormInf() method will not properly calculate the infinity norm for a matrix that has entries that are
                replicated on multiple processors.  In this case, if the rows are fully replicated, NormInf() will return a
                value equal to the maximum number of processors that any individual row of the matrix is replicated on.
    \param x - (Out) An Epetra_Vector containing the inverse of the row sums of the \e this matrix.
                \warning When rows are fully replicated on multiple processors, it is assumed that the distribution of x is
                the same as the rows (RowMap())of \e this.  When multiple processors contain partial sums for individual entries, the
                distribution of x is assumed to be the same as the RangeMap() of \e this.  When each row of \e this is
                uniquely owned, the distribution of x can be that of the RowMap() or the RangeMap().
                                                                                                     
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int InvRowSums(Epetra_Vector& x) const;

  //! Computes the inverse of the max of absolute values of the rows of the Epetra_CrsMatrix, results returned in x.
  /*! The vector x will return such that x[i] will contain the inverse of max of the absolute values of the entries in the ith
	        row of the \e this matrix.
                \warning This method will not work when multiple processors contain partial sums for individual entries.
    \param x - (Out) An Epetra_Vector containing the inverse of the row maxs of the \e this matrix. 
		\warning When rows are fully replicated on multiple processors, it is assumed that the distribution of x is
                the same as the rows (RowMap())of \e this.  When each row of \e this is uniquely owned, the distribution of 
		x can be that of the RowMap() or the RangeMap().
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int InvRowMaxs(Epetra_Vector& x) const;
	
  //! Scales the Epetra_CrsMatrix on the left with a Epetra_Vector x.
  /*! The \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the row number of A
		and j denotes the column number of A.
    \param x - (In) An Epetra_Vector to scale with.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post The matrix will be scaled as described above.
  */
  int LeftScale(const Epetra_Vector& x);
	
  //! Computes the inverse of the sum of absolute values of the columns of the Epetra_CrsMatrix, results returned in x.
  /*! The vector x will return such that x[j] will contain the inverse of the sum of the absolute values of the 
		entries in the jth column of the \e this matrix.   Using the resulting vector from this function as input to 
		RightScale() will make the one norm of the resulting matrix exactly 1.
                \warning The NormOne() method will not properly calculate the one norm for a matrix that has entries that are
                replicated on multiple processors.  In this case, if the columns are fully replicated, NormOne() will return a
                value equal to the maximum number of processors that any individual column of the matrix is repliated on.

    \param x - (Out) An Epetra_Vector containing the column sums of the \e this matrix. 
                \warning When columns are fully replicated on multiple processors, it is assumed that the distribution of x is
                the same as the columns (ColMap()) of \e this.  When multiple processors contain partial sums for entries, the
                distribution of x is assumed to be the same as the DomainMap() of \e this.  When each column of \e this is
                uniquely owned, the distribution of x can be that of the ColMap() or the DomainMap().
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int InvColSums(Epetra_Vector& x) const;

  //! Computes the max of absolute values of the columns of the Epetra_CrsMatrix, results returned in x.
  /*! The vector x will return such that x[j] will contain the inverse of max of the absolute values of the entries
		in the jth row of the \e this matrix.
                \warning This method will not work when multiple processors contain partial sums for individual entries.
    \param x - (Out) An Epetra_Vector containing the column maxs of the \e this matrix. 
                \warning When columns are fully replicated on multiple processors, it is assumed that the distribution of x is
                the same as the columns (ColMap()) of \e this.  When each column of \e this is
                uniquely owned, the distribution of x can be that of the ColMap() or the DomainMap().
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int InvColMaxs(Epetra_Vector& x) const;

  //! Scales the Epetra_CrsMatrix on the right with a Epetra_Vector x.
  /*! The \e this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
		and j denotes the global column number of A.
    \param x - (In) The Epetra_Vector used for scaling \e this.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post The matrix will be scaled as described above.
  */
  int RightScale(const Epetra_Vector& x);
  //@}
	
  //! @name Matrix Properties Query Methods
  //@{ 
	
	
  //! If FillComplete() has been called, this query returns true, otherwise it returns false.
  bool Filled() const {return(Graph_.Filled());}
	
  //! If OptimizeStorage() has been called, this query returns true, otherwise it returns false.
  bool StorageOptimized() const {return(StorageOptimized_);}
	
  //! If matrix indices has not been transformed to local, this query returns true, otherwise it returns false.
  bool IndicesAreGlobal() const {return(Graph_.IndicesAreGlobal());}
	
  //! If matrix indices has been transformed to local, this query returns true, otherwise it returns false.
  bool IndicesAreLocal() const {return(Graph_.IndicesAreLocal());}
	
  //! If matrix indices are packed into single array (done in OptimizeStorage()) return true, otherwise false.
  bool IndicesAreContiguous() const {return(Graph_.IndicesAreContiguous());}
	
  //! If matrix is lower triangular in local index space, this query returns true, otherwise it returns false.
  bool LowerTriangular() const {return(Graph_.LowerTriangular());}
	
  //! If matrix is upper triangular in local index space, this query returns true, otherwise it returns false.
  bool UpperTriangular() const {return(Graph_.UpperTriangular());}
	
  //! If matrix has no diagonal entries in global index space, this query returns true, otherwise it returns false.
  bool NoDiagonal() const {return(Graph_.NoDiagonal());}
	
  //@}
  
  //! @name Atribute access functions
  //@{ 
	
  //! Returns the infinity norm of the global matrix.
  /* Returns the quantity \f$ \| A \|_\infty\f$ such that
     \f[\| A \|_\infty = \max_{1\lei\lem} \sum_{j=1}^n |a_{ij}| \f]
     \warning The NormInf() method will not properly calculate the infinity norm for a matrix that has entries that are
     replicated on multiple processors.	*/ 
  double NormInf() const;
	
  //! Returns the one norm of the global matrix.
  /* Returns the quantity \f$ \| A \|_1\f$ such that
     \f[\| A \|_1= \max_{1\lej\len} \sum_{i=1}^m |a_{ij}| \f].
     \warning The NormOne() method will not properly calculate the one norm for a matrix that has entries that are
     replicated on multiple processors.
  */ 
  double NormOne() const;

  //! Returns the frobenius norm of the global matrix.
  /* Returns the quantity \f[ \| A \|_{Frobenius} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n\|a_{ij}\|^2}\f]
     \warning the NormFrobenius() method will not properly calculate the frobenius norm for a matrix that
     has entries which are replicated on multiple processors. In that case, the returned
     norm will be larger than the true norm.
   */
  double NormFrobenius() const;

  //! Returns the number of nonzero entries in the global matrix.
  /*
    Note that if maps are defined such that some nonzeros appear on
    multiple processors, then those nonzeros will be counted multiple times.
    If the user wishes to assemble a matrix from overlapping submatrices,
    they can use Epetra_FECrsMatrix.
  */
  int NumGlobalNonzeros() const {return(Graph_.NumGlobalNonzeros());}
	
  //! Returns the number of global matrix rows.
  int NumGlobalRows() const {return(Graph_.NumGlobalRows());}
	
  //! Returns the number of global matrix columns.
  int NumGlobalCols() const {return(Graph_.NumGlobalCols());}
	
  //! Returns the number of global nonzero diagonal entries, based on global row/column index comparisons.
  int NumGlobalDiagonals() const {return(Graph_.NumGlobalDiagonals());}
	
  //! Returns the number of nonzero entries in the calling processor's portion of the matrix.
  int NumMyNonzeros() const {return(Graph_.NumMyNonzeros());}
	
  //! Returns the number of matrix rows owned by the calling processor.
  int NumMyRows() const {return(Graph_.NumMyRows());}
	
  //! Returns the number of entries in the set of column-indices that appear on this processor.
  /*! The set of column-indices that appear on this processor is the union of column-indices that
    appear in all local rows. The size of this set isn't available until FillComplete() has been called.
    \pre Filled()==true
  */
  int NumMyCols() const {return(Graph_.NumMyCols());}
	
  //! Returns the number of local nonzero diagonal entries, based on global row/column index comparisons.
  /*!
    \pre Filled()==true
  */
  int NumMyDiagonals() const {return(Graph_.NumMyDiagonals());}
	
  //! Returns the current number of nonzero entries in specified global row on this processor.
  int NumGlobalEntries(int Row) const {return(Graph_.NumGlobalIndices(Row));}
	
  //! Returns the allocated number of nonzero entries in specified global row on this processor.
  int NumAllocatedGlobalEntries(int Row) const{return(Graph_.NumAllocatedGlobalIndices(Row));}
	
  //! Returns the maximum number of nonzero entries across all rows on this processor.
  /*!
    \pre Filled()==true
  */
  int MaxNumEntries() const {return(Graph_.MaxNumIndices());}

  //! Returns the maximum number of nonzero entries across all rows on all processors.
  /*!
    \pre Filled()==true
  */
  int GlobalMaxNumEntries() const {return(Graph_.GlobalMaxNumIndices());}
	
  //! Returns the current number of nonzero entries in specified local row on this processor.
  int NumMyEntries(int Row) const {return(Graph_.NumMyIndices(Row));}
	
  //! Returns the allocated number of nonzero entries in specified local row on this processor.
  int NumAllocatedMyEntries(int Row) const {return(Graph_.NumAllocatedMyIndices(Row));}
	
  //! Returns the index base for row and column indices for this graph.
  int IndexBase() const {return(Graph_.IndexBase());}
	
	
  //! Returns true if the graph associated with this matrix was pre-constructed and therefore not changeable.
  bool StaticGraph() {return(StaticGraph_);}

  //! Returns a reference to the Epetra_CrsGraph object associated with this matrix.
  const Epetra_CrsGraph& Graph() const {return(Graph_);}
	
  //! Returns the Epetra_Map object associated with the rows of this matrix.
  const Epetra_Map& RowMap() const {return((Epetra_Map &)Graph_.RowMap());}

  //! Replaces the current RowMap with the user-specified map object.
  /** Replaces the current RowMap with the user-specified map object, but only
      if currentmap->PointSameAs(newmap) is true. This is a collective function.
      Returns 0 if map is replaced, -1 if not.

      \pre RowMap().PointSameAs(newmap)==true
  */
  int ReplaceRowMap(const Epetra_BlockMap& newmap);

  //! Returns true if we have a well-defined ColMap, and returns false otherwise.
  /*! \pre We have a well-defined ColMap if a) a ColMap was passed in at construction, 
    or b) the MakeColMap function has been called. (Calling either of the FillComplete functions
    will result in MakeColMap being called.) 
  */
  bool HaveColMap() const {return(Graph_.HaveColMap());}

  //! Replaces the current ColMap with the user-specified map object.
  /** Replaces the current ColMap with the user-specified map object, but only
      if currentmap->PointSameAs(newmap) is true. This is a collective function.
      Returns 0 if map is replaced, -1 if not.
      
      \pre ColMap().PointSameAs(newmap)==true
  */
  int ReplaceColMap(const Epetra_BlockMap& newmap);


  //! Returns the Epetra_Map object that describes the set of column-indices that appear in each processor's locally owned matrix rows.
  /*!Note that if the matrix was constructed with only a row-map, then until FillComplete() is called, this method returns
    a column-map that is a copy of the row-map. That 'initial' column-map is replaced with a computed column-map (that
    contains the set of column-indices appearing in each processor's local portion of the matrix) when FillComplete() is
    called.

    \pre HaveColMap()==true
  */
  const Epetra_Map& ColMap() const {return((Epetra_Map &) Graph_.ColMap());}
	
  //! Returns the Epetra_Map object associated with the domain of this matrix operator.
  /*!
    \pre Filled()==true
  */
  const Epetra_Map& DomainMap() const {return((Epetra_Map &)Graph_.DomainMap());}
	
  //! Returns the Epetra_Map object associated with the range of this matrix operator.
  /*!
    \pre Filled()==true
  */
  const Epetra_Map& RangeMap() const  {return((Epetra_Map &)Graph_.RangeMap());}
	
  //! Returns the Epetra_Import object that contains the import operations for distributed operations.
  const Epetra_Import* Importer() const {return(Graph_.Importer());}
	
  //! Returns the Epetra_Export object that contains the export operations for distributed operations.
  const Epetra_Export* Exporter() const {return(Graph_.Exporter());}
	
  //! Returns a pointer to the Epetra_Comm communicator associated with this matrix.
  const Epetra_Comm& Comm() const {return(Epetra_DistObject::Comm());}
  //@}
  
  //! @name Local/Global ID methods
  //@{ 
	//! Returns the local row index for given global row index, returns -1 if no local row for this global row.
	int LRID( int GRID_in) const {return(Graph_.LRID(GRID_in));}
	
	//! Returns the global row index for give local row index, returns IndexBase-1 if we don't have this local row.
	int GRID( int LRID_in) const {return(Graph_.GRID(LRID_in));}
	
	//! Returns the local column index for given global column index, returns -1 if no local column for this global column.
	/*!
	  \pre HaveColMap()==true (If HaveColMap()==false, returns -1)
	 */
	int LCID( int GCID_in) const {return(Graph_.LCID(GCID_in));}
	
	//! Returns the global column index for give local column index, returns IndexBase-1 if we don't have this local column.
	/*!
	  \pre HaveColMap()==true (If HaveColMap()==false, returns -1)
	 */
	int GCID( int LCID_in) const {return(Graph_.GCID(LCID_in));}
	
	//! Returns true if the GRID passed in belongs to the calling processor in this map, otherwise returns false.
	bool MyGRID(int GRID_in) const {return(Graph_.MyGRID(GRID_in));}
	
	//! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
	bool MyLRID(int LRID_in) const {return(Graph_.MyLRID(LRID_in));}
	
	//! Returns true if the GCID passed in belongs to the calling processor in this map, otherwise returns false.
	/*!
	  \pre HaveColMap()==true (If HaveColMap()==false, returns -1)
	 */
	bool MyGCID(int GCID_in) const {return(Graph_.MyGCID(GCID_in));}
   
	//! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
	/*!
	  \pre HaveColMap()==true (If HaveColMap()==false, returns -1)
	 */
	bool MyLCID(int LCID_in) const {return(Graph_.MyLCID(LCID_in));}

	//! Returns true of GID is owned by the calling processor, otherwise it returns false.
	bool MyGlobalRow(int GID) const {return(Graph_.MyGlobalRow(GID));}
  //@}
  
  
  //! @name I/O Methods
  //@{ 

  //! Print method
  virtual void Print(ostream& os) const;
  //@}

  //! @name Additional methods required to support the Epetra_Operator interface
  //@{ 

  //! Returns a character string describing the operator
  const char* Label() const {return(Epetra_Object::Label());}
	
  //! If set true, transpose of this operator will be applied.
  /*! This flag allows the transpose of the given operator to be used implicitly.  Setting this flag
		affects only the Apply() and ApplyInverse() methods.  If the implementation of this interface 
		does not support transpose use, this method should return a value of -1.
		
    \param UseTranspose - (In) If true, multiply by the transpose of operator, otherwise just use operator.
		
    \return Always returns 0.
  */
  int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);}

  //! Returns the result of a Epetra_Operator applied to a Epetra_MultiVector X in Y.
  /*! 
    \param X - (In) An Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Y -(Out) An Epetra_MultiVector of dimension NumVectors containing result.
	
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
    return(Epetra_CrsMatrix::Multiply(Epetra_CrsMatrix::UseTranspose(), X, Y));}
	
	//! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
	/*! In this implementation, we use several existing attributes to determine how virtual
	  method ApplyInverse() should call the concrete method Solve().  We pass in the UpperTriangular(), 
	  the Epetra_CrsMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
	  if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
	  be accounted for when doing a triangular solve.
	  
	  \param X - (In) An Epetra_MultiVector of dimension NumVectors to solve for.
	  \param Y - (Out) An Epetra_MultiVector of dimension NumVectors containing result.
		
    \return Integer error code, set to 0 if successful.
    \pre Filled()==true
    \post Unchanged.
  */
  int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
    return(Solve(UpperTriangular(), Epetra_CrsMatrix::UseTranspose(), NoDiagonal(), X, Y));}

	//! Returns true because this class can compute an Inf-norm.
	bool HasNormInf() const {return(true);}
	
	//! Returns the current UseTranspose setting.
	bool UseTranspose() const {return(UseTranspose_);}
	
	//! Returns the Epetra_Map object associated with the domain of this matrix operator.
	const Epetra_Map& OperatorDomainMap() const
        {
          if (UseTranspose()) return(RangeMap());
          else return(DomainMap());
        }
	
	//! Returns the Epetra_Map object associated with the range of this matrix operator.
	const Epetra_Map& OperatorRangeMap() const
        {
          if (UseTranspose()) return(DomainMap());
          else return(RangeMap());
        }

  //@}
  //! @name Additional methods required to implement Epetra_RowMatrix interface
  //@{ 

	//! Return the current number of values stored for the specified local row.
	/*! Similar to NumMyEntries() except NumEntries is returned as an argument
		and error checking is done on the input value MyRow.
    \param MyRow - (In) Local row.
    \param NumEntries - (Out) Number of nonzero values.
	  
    \return Integer error code, set to 0 if successful.
    \pre None.
    \post Unchanged.
  */
	int NumMyRowEntries(int MyRow, int& NumEntries) const;

  //! Map() method inherited from Epetra_DistObject
  const Epetra_BlockMap& Map() const { return Epetra_DistObject::Map(); }

	//! Returns the Epetra_Map object associated with the rows of this matrix.
	const Epetra_Map& RowMatrixRowMap() const {return(RowMap());}
	
	//! Returns the Epetra_Map object associated with columns of this matrix.
	const Epetra_Map& RowMatrixColMap() const {return(ColMap());}
	
	//! Returns the Epetra_Import object that contains the import operations for distributed operations.
	const Epetra_Import* RowMatrixImporter() const {return(Importer());}
	
  //@}
	
  //! @name Inlined Operator Methods
  //@{ 
	
	//! Inlined bracket operator for fast access to data. (Const and Non-const versions)
	/*! No error checking and dangerous for optimization purposes.
    \param Loc - (In) Local row.
	  
    \return reference to pointer to locally indexed Loc row in matrix.
  */
	inline double* operator[] (int Loc) { 
	  if (StorageOptimized()){ int * ind = Graph().IndexOffset(); return(All_Values_+ind[Loc]);}
	  else return Values_[Loc];}
	inline double* operator[] (int Loc) const {
	  if (StorageOptimized()){ int * ind = Graph().IndexOffset(); return(All_Values_+ind[Loc]);}
	  else return Values_[Loc];}
  //@}
	
  //! @name Expert-only methods:  These methods are intended for experts only and have some risk of changing in the future, since they rely on underlying data structure assumptions
  //@{ 
  //! Returns internal data pointers associated with Crs matrix format.
  /*! Returns data pointers to facilitate optimized code within external packages.
 
    \param IndexOffset - (Out) Extracted array of indices into Values[] and Indices[]. Local
                          row k is stored in Values[IndexOffset[k]:IndexOffset[k+1]-1] and
                          Indices[IndexOffset[k]:IndexOffset[k+1]-1].
    \param Values - (Out) Extracted values for all local rows.
    \param Indices - (Out) Extracted local column indices for the corresponding values.

    \return Integer error code, set to 0 if successful. Returns -1 if FillComplete has not been
                performed or Storage has not been Optimized.

    \warning This method is intended for expert only, its use may require user code modifications in future versions of Epetra.
  */ 
	int ExtractCrsDataPointers(int *& IndexOffset, int *& Indices, double *& Values_in) const {
	  if (StorageOptimized()) { 
	    IndexOffset = Graph().IndexOffset();
	    Indices = Graph().All_Indices();
	    Values_in  = All_Values(); 
	    return (0);
	  } 
	  else { IndexOffset = 0; Indices = 0; Values_in  = 0; return (-1);} }
	
  //! Forces FillComplete() to locally order ghostnodes associated with each remote processor in ascending order.
  /*! To be compliant with AztecOO, FillComplete() already locally orders ghostnodes such that
      information received from processor k has a lower local numbering than information received
      from processor j if k is less than j.  SortGhostsAssociatedWithEachProcessor(True) further
      forces FillComplete() to locally number all ghostnodes received from processor k in ascending
      order. That is, the local numbering of b is less than c if the global numbering of b is less
      than c and if both b and c are owned by the same processor. This is done to be compliant with
      some limited block features within ML. In particular, some ML features require that a block
      structure of the matrix be maintained even within the ghost variables. Always returns 0.
  */

  int SortGhostsAssociatedWithEachProcessor(bool Flag)  {Graph_.SortGhostsAssociatedWithEachProcessor(Flag); return(0);}
  //@}
	
  //! @name Deprecated methods:  These methods still work, but will be removed in a future version
  //@{ 
	
	//! Use ColMap() instead. 
	const Epetra_Map& ImportMap() const {return((Epetra_Map&) Graph_.ImportMap());}

	//! Use FillComplete() instead.
	int TransformToLocal();

	//! Use FillComplete(const Epetra_Map& DomainMap, const Epetra_Map& RangeMap) instead.
	int TransformToLocal(const Epetra_Map* DomainMap, const Epetra_Map* RangeMap);

  //@}


 protected:
  bool Allocated() const {return(Allocated_);}
  int SetAllocated(bool Flag) {Allocated_ = Flag; return(0);}
  double** Values() const {
    if (StorageOptimized()) throw ReportError("This method: double** Values() cannot be called when StorageOptimized()==true", -1);
    else return(Values_);}
  double* All_Values() const {
    if (!StorageOptimized()) throw ReportError("This method: double* All_Values()cannot be called when StorageOptimized()==false", -1);
    else return(All_Values_);}
  double* Values(int LocalRow) const {
    if (StorageOptimized())
      if (Graph().StorageOptimized())
	return(All_Values_+Graph().IndexOffset()[LocalRow]);
      else throw ReportError("This method: double* Values()cannot be called when StorageOptimized()==true and Graph().StorageOptimized()==false", -1);
    else return(Values_[LocalRow]);}
  
  void InitializeDefaults();
  int Allocate();

  int InsertValues(int LocalRow, int NumEntries, double* Values, int* Indices);
  int InsertValues(int LocalRow, int NumEntries, const double* Values, const int* Indices);

  int InsertOffsetValues(int GlobalRow, int NumEntries, double *Values, int *Indices);
  int InsertOffsetValues(int GlobalRow, int NumEntries, const double *Values, const int *Indices);
  int ReplaceOffsetValues(int GlobalRow, int NumEntries, const double *Values, const int *Indices);
  int SumIntoOffsetValues(int GlobalRow, int NumEntries, const double *Values, const int *Indices);
  void UpdateImportVector(int NumVectors) const;
  void UpdateExportVector(int NumVectors) const;
  void GeneralMV(double * x, double * y) const;
  void GeneralMTV(double * x, double * y) const;
  void GeneralMM(double ** X, int LDX, double ** Y, int LDY, int NumVectors) const;
  void GeneralMTM(double ** X, int LDX, double ** Y, int LDY, int NumVectors) const;
  void GeneralSV(bool Upper, bool Trans, bool UnitDiagonal, double * x, double * y) const;
  void GeneralSM(bool Upper, bool Trans, bool UnitDiagonal, double ** X, int LDX, double ** Y, int LDY, int NumVectors) const;

  void SetStaticGraph(bool Flag) {StaticGraph_ = Flag;}

  int CheckSizes(const Epetra_SrcDistObject& A);

  int CopyAndPermute(const Epetra_SrcDistObject& Source,
                     int NumSameIDs, 
                     int NumPermuteIDs,
                     int* PermuteToLIDs,
                     int* PermuteFromLIDs,
                     const Epetra_OffsetIndex * Indexor);
  int CopyAndPermuteCrsMatrix(const Epetra_CrsMatrix& A,
                              int NumSameIDs, 
                              int NumPermuteIDs,
                              int* PermuteToLIDs,
                              int* PermuteFromLIDs,
                              const Epetra_OffsetIndex * Indexor);
  int CopyAndPermuteRowMatrix(const Epetra_RowMatrix& A,
                              int NumSameIDs, 
                              int NumPermuteIDs,
                              int* PermuteToLIDs,
                              int* PermuteFromLIDs,
                              const Epetra_OffsetIndex * Indexor);
  
  int PackAndPrepare(const Epetra_SrcDistObject& Source,
                     int NumExportIDs,
                     int* ExportLIDs,
                     int& LenExports,
                     char*& Exports,
                     int& SizeOfPacket,
                     int* Sizes,
                     bool& VarSizes,
                     Epetra_Distributor& Distor);

  int UnpackAndCombine(const Epetra_SrcDistObject& Source, 
                       int NumImportIDs,
                       int* ImportLIDs, 
                       int LenImports,
                       char* Imports,
                       int& SizeOfPacket, 
                       Epetra_Distributor& Distor,
                       Epetra_CombineMode CombineMode,
                       const Epetra_OffsetIndex * Indexor);

  //! Sort column entries, row-by-row, in ascending order.
  int SortEntries();

  //! If SortEntries() has been called, this query returns true, otherwise it returns false.
  bool Sorted() const {return(Graph_.Sorted());}

  //! Add entries that have the same column index. Remove redundant entries from list.
  int MergeRedundantEntries();

  //! If MergeRedundantEntries() has been called, this query returns true, otherwise it returns false.
  bool NoRedundancies() const {return(Graph_.NoRedundancies());}
		
  void DeleteMemory();

  Epetra_CrsGraph Graph_;
  bool Allocated_;
  bool StaticGraph_;
  bool UseTranspose_;
  bool constructedWithFilledGraph_;
  bool matrixFillCompleteCalled_;
  bool StorageOptimized_;

  double** Values_;
  double* All_Values_;
  mutable double NormInf_;
  mutable double NormOne_;
  mutable double NormFrob_;

  int NumMyRows_;
  mutable Epetra_MultiVector* ImportVector_;
  mutable Epetra_MultiVector* ExportVector_;

  Epetra_DataAccess CV_;

  bool squareFillCompleteCalled_;
 private:

  // These are the pre-5.0 versions of solve.  They are still faster that generic 5.0 solves, so we keep them around
  int Solve1(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_Vector& x, Epetra_Vector& y) const;
  int Solve1(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

};
#endif /* EPETRA_CRSMATRIX_H */