This file is indexed.

/usr/include/trilinos/EpetraExt_HDF5.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
//@HEADER
// ***********************************************************************
//
//     EpetraExt: Epetra Extended - Linear Algebra Services Package
//                 Copyright (2001) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER

#ifndef EPETRAEXT_HDF5_H
#define EPETRAEXT_HDF5_H

#include "EpetraExt_ConfigDefs.h"
#ifdef HAVE_EPETRAEXT_HDF5

#include "hdf5.h"
class Epetra_Map;
class Epetra_BlockMap;
class Epetra_Comm;
class Epetra_IntVector;
class Epetra_MultiVector;
class Epetra_CrsGraph;
class Epetra_RowMatrix;
class Epetra_CrsMatrix;
class Epetra_VbrMatrix;
namespace Teuchos {
  class ParameterList;
}
namespace EpetraExt {
  class Handle;
  template<class T>
  class DistArray;
}

namespace EpetraExt 
{
/*! 
\brief class HDF5: A class for storing Epetra objects in parallel binary files

<P><B>Introduction</B>

<P>Class HDF5 allows to read and write using the HDF5 parallel binary data
format. HDF5 has the following advantages:
- the file format is binary and portable. Being binary, its size is very compact;
- the file format can be read and written in parallel;
- MATLAB contains a built-in HDF5 data reader, making it easy to interface Trilinos
  application with MATLAB, and vice-versa;
- the library is easy to build: just download the tarball from the official NCSA HDF5 
  web page, configure/make/make install, and everything should work. While building
  Trilinos, then you just have to specify the location of the header files using
  --with-incdirs, the location of the library using --with-ldflags, and the HDF5 library 
  using --with-libs. Note that you might need to add "-lz" to the list of libraries; 
  this library is typically already installed on your system;
- HDF5 are like a file system, and they can contain directories and files. This means
  that more data can be stored in the same file. Besides, one can append new data to
  an existing file, or read only one data set;
- It is very easy to add "meta-data" to your data; for example a string containing
  information about the machine where the code was executed, the parameter list used
  for the preconditioner or the nonlinear solver, the convergence history, and so on;
- The number of processors reading a given data does not have to coincide with that
  used to write the data.

The class supports I/O for the following distributed Epetra objects:
- Epetra_Map (I/O);
- Epetra_BlockMap (I/O);
- Epetra_CrsGraph (I/O);
- Epetra_RowMatrix (O);
- Epetra_CrsMatrix (I/O);
- Epetra_IntVector (I/O);
- Epetra_MultiVector (I/O).

The class also supports some non-distributed types:
- Teuchos::ParameterList (I/O);
- basic data types like scalar int and double variables (I/O);
- and arrays of arbitrary data type are supported (I/O).
It is meant that the non-distributed data types have the same value on all processors.

Some utility methods are provided:
- CreateGroup() creates the specified group in the file;
- IsContained() returns \c true is the specified group is already contained in the file;
- WriteComment() allows to write any string as comment for a group;
- a method to write and read a distributed array of arbitrary type is provided. 

By using these methods, as well as the other methods to write non-distributed types, one 
can read and write any serial or distributed object.

<P><B>Data Model</B>

The HDF5 library itself can be used to define very general data formats; this class, 
instead, is only structured around the concept of \e groups. A \e group is an entity,
like for example a scalar value, an Epetra_Map, or a Teuchos::ParameterList. Within each
group, different datasets describe the content of the group. For example, an 
Epetra_MultiVector is specified by datasets \c NumVectors and \c Values, which contain 
the number of vectors, and the numerical values, respectively. The \c comment of each group 
is a character string that must match the class name.

The HDF5 class has the following limitations:
- Objects stored in a file cannot be deleted; if you want to do that, you should read the 
  content of the file, then create a new file and store on it the information to keep;
- it is not possible to overwrite distributed objects.


<P><B>Errors</B>

When an error occurs, a EpetraExt::Exception is thrown. Method Print() of the Exception class
gives a description of what went wrong.


<P><B>Example of usage</B>

First, one has to create an HDF5 class, then either Open() or Create() the file:
\code
EpetraExt::HDF5 HDF5(Comm);
HDF5.Create("myfile.h5");
\endcode

Writing commands might be as follows:
\code
Epetra_Map* Map = <create map here>
Epetra_Map* BlockMap = <create block map here>
Epetra_RowMatrix* Matrix = <create matrix here>
Epetra_MultiVector* LHS = <...>
Epetra_MultiVector* RHS = <...>

// write a map, whose group name contains the number of processors
HDF5.Write("map-" + toString(Comm.NumProc()), *Map);
HDF5.Write("matrix", *Matrix);
HDF5.Write("LHS", LHS);
HDF5.Write("RHS", RHS);
\endcode

To write a Teuchos::ParameterList, simply do
\code
HDF5.Write("EpetraExtList", EpetraExtList);

\endcode
The file can contain meta-data as well. Each meta-data is defined by a group,
and a dataset name. A group can contain more than one dataset, and can be a new group
or an already existing group. For example, to specify the numerical quadrature formula
used to assemble the matrix, one can do as follows:
\code
HDF5.Write("matrix", "quadrature order", 3);
\endcode
Alternatively, datasets can be assigned to a new group, let's say \c "my parameters":
\code
HDF5.Write("my parameters", "latitude", 12);
HDF5.Write("my parameters", "longitude", 67);
HDF5.Write("my parameters", "angle", 12.3);

vector<int> iarray(3); 
iarray[0] = 0, iarray[1] = 1; iarray[2] = 2;
HDF5.Write("my parameters", "int array", H5T_NATIVE_INT, 3, &iarray[0]);

vector<double> darray(3); 
darray[0] = 0.1, darray[1] = 1.1; darray[2] = 2.1;
HDF5.Write("my parameters", "double array", H5T_NATIVE_DOUBLE, 3, &darray[0]);
\endcode

Note that all non-distributed datasets are supposed to have the same value
on all processors.

Reading data is a easy as writing. Let us consider how to read an Epetra_CrsMatrix, 
other Epetra objects having a similar bejavior. Method ReadCrsMatrixProperties()
can be used to query for some matrix properties, without reading the whole matrix:
\code
int NumGlobalRows, NumGlobalCols, NumGlobalNonzeros;
int NumGlobalDiagonals, MaxNumEntries;
double NormOne, NormInf;

ReadCrsMatrixProperties(GroupName, NumGlobalRows, NumGlobalCols,
                        NumGlobalNonzeros, NumGlobalDiagonals, MaxNumEntries,
                        NormOne, NormInf);
\endcode

The above call is not required, and can be skipped. The actual reading is:
\code
Epetra_CrsMatrix* NewMatrix = 0;
HDF5.Read("matrix", NewMatrix);
\endcode

In this case, \c NewMatrix is based on a linear map. If the DomainMap() and RangeMap() are
known and non-trivial, one can use
\code
HDF5.Read("matrix", DomainMap, RangeMap, NewMatrix);
\endcode

Reading meta-data looks like:
\code
HDF5.Read("my parameters", "latitude", new_latitude);
HDF5.Read("my parameters", "longitude", new_longitude);
HDF5.Read("my parameters", "int array", H5T_NATIVE_INT, 3, &new_iarray[0]);
HDF5.Read("my parameters", "double array", H5T_NATIVE_DOUBLE, 3, &new_darray[0]);
\endcode

To analyze the content of the file, one can use 
\c "h5dump filename.h5" or "h5dump filename.h5 -H".


<P><B>MATLAB Interface</B>

Reading HDF5 files from MATLAB is very, since the built-in functions 
\c hdf5read, \c hdf5write, \c hdf5info. For example, to read the above \c Matrix from
MATLAB, one can do:
\code
NumGlobalRows = double(hdf5read('myfile.h5', '/matrix/NumGlobalRows/'));
NumGlobalCols = double(hdf5read('myfile.h5', '/matrix/NumGlobalCols/'));
ROW = double(hdf5read('myfile.h5', '/matrix/ROW/'));
COL = double(hdf5read('myfile.h5', '/matrix/COL/'));
VAL = hdf5read('myfile.h5', '/matrix/VAL/');
A = sparse(ROW + 1, COL + 1, VAL, NumGlobalRows, NumGlobalCols);
\endcode
The use of \c double() is required by \c sparse, which does not accept \c int32 data.

To dump on file \c matlab.h5 a MATLAB matrix (in this case, \c A), one can proceed as 
follows:
\code
n = 10;
A = speye(n, n);
[ROW,COL,VAL] = find(A);
hdf5write('matlab.h5', '/speye/__type__',           'Epetra_RowMatrix');
hdf5write('matlab.h5', '/speye/NumGlobalRows',      int32(n), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/NumGlobalCols',      int32(n), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/NumGlobalNonzeros',  int32(n), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/NumGlobalDiagonals', int32(n), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/MaxNumEntries',      int32(1), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/NormOne',            1.0,      'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/NormInf',            1.0,      'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/ROW', int32(ROW - 1), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/COL', int32(COL - 1), 'WriteMode', 'append');
hdf5write('matlab.h5', '/speye/VAL', VAL,            'WriteMode', 'append');
\endcode
Note that \c __type__ specification, that must reflect the Epetra class name.

To dump on file \c matlab.h5 a MATLAB dense array (in this case, \c x), one can proceed as follows:
\code
n = 10;
x = [zeros(n,1), rand(n, 1)]';
hdf5write('matlab.h5', '/x/__type__',    'Epetra_MultiVector');
hdf5write('matlab.h5', '/x/GlobalLength',int32(n), 'WriteMode', 'append');
hdf5write('matlab.h5', '/x/NumVectors',  int32(2), 'WriteMode', 'append');
hdf5write('matlab.h5', '/x/Values',      x,        'WriteMode', 'append');
\endcode
Note that MATLAB vectors must be stored as \e row vectors.  

To write a Map from MATLAB follows a very similar pattern. The following example shows how to define a map that can be used with two processors:
\code
IndexBase = 0;
NumMyElements = [5 5];
n = 10;
MyGlobalElements = [5 6 7 8 9 0 1 2 3 4];
hdf5write('matlab.h5', '/map-2/__type__',          'Epetra_Map');
hdf5write('matlab.h5', '/map-2/NumGlobalElements', int32(n),                'WriteMode', 'append');
hdf5write('matlab.h5', '/map-2/IndexBase',         int32(IndexBase),        'WriteMode', 'append');
hdf5write('matlab.h5', '/map-2/NumProc',           int32(2),                'WriteMode', 'append');
hdf5write('matlab.h5', '/map-2/NumMyElements',     int32(NumMyElements),    'WriteMode', 'append');
hdf5write('matlab.h5', '/map-2/MyGlobalElements',  int32(MyGlobalElements), 'WriteMode', 'append');
\endcode


\author Marzio Sala, D-INFK/ETHZ

\date Last updated on 16-Mar-06.

\todo 
- all distributed objects are assumed in local state, this is not necessary (just easier)
- Epetra_VbrMatrix input has to be done, now it is considered as an Epetra_RowMatrix

*/
class HDF5 
{
  public: 
    // @{ \name Constructor and destructor.
    //! ctor
    HDF5(const Epetra_Comm& Comm); 

    //! dtor
    ~HDF5() 
    {
      if (IsOpen())
        Close();
    }

    // @}
    // @{ \name Basic operations
    
    //! Creates a new file.
    void Create(const string FileName);

    //! Opens specified file with given access type.
    void Open(const string FileName, int AccessType = H5F_ACC_RDWR);

    //! Closes the file.
    void Close()
    {
      H5Fclose(file_id_);
      IsOpen_ = false;
    }
    
    //! Flush the content to the file
    void Flush()
    {
      H5Fflush(file_id_, H5F_SCOPE_GLOBAL);
    }

    //! Returns \c true is a file has already been open using Open()/Create()
    bool IsOpen() const
    {
      return(IsOpen_);
    }

    //! Creates group \c GroupName.
    void CreateGroup(const string& GroupName)
    {
      hid_t group_id = H5Gcreate(file_id_, GroupName.c_str(), 0);
      H5Gclose(group_id);
    }

    //! Returns \c true is \c Name is contained in the database.
    bool IsContained(const string Name);

    // @}
    // @{ \name basic non-distributed data types
    
    //! Writes an integer in group \c GroupName using intentified \c DataSetName.
    void Write(const string& GroupName, const string& DataSetName, int data);

    //! Reads an integer from group \c /GroupName/DataSetName
    void Read(const string& GroupName, const string& DataSetName, int& data);

    //! Writes a double in group \c GroupName using intentified \c DataSetName.
    void Write(const string& GroupName, const string& DataSetName, double data);

    //! Reads a double from group \c /GroupName/DataSetName
    void Read(const string& GroupName, const string& DataSetName, double& data);

    //! Writes a string in group \c GroupName using intentified \c DataSetName.
    void Write(const string& GroupName, const string& DataSetName, const string& data);

    //! Reads a string from group \c /GroupName/DataSetName
    void Read(const string& GroupName, const string& DataSetName, string& data);

    //! Reads serial array \c data, of type \c type, from group \c GroupNameusing dataset name \c DataSetName
    void Read(const string& GroupName, const string& DataSetName,
              const int type, const int Length, void* data);

    //! Writes serial array \c data, of type \c type, to group \c GroupNameusing dataset name \c DataSetName
    void Write(const string& GroupName, const string& DataSetName,
                         const int type, const int Length, 
                         void* data);

    //! Associates string \c Comment with group \c GroupName.
    void WriteComment(const string& GroupName, string Comment)
    {
      H5Gset_comment(file_id_, GroupName.c_str(), Comment.c_str());
    }

    //! Reads the string associated with group \c GroupName.
    void ReadComment(const string& GroupName, string& Comment)
    {
      char comment[128];
      H5Gget_comment(file_id_, GroupName.c_str(), 128, comment);
      Comment = comment;
    }

    // @}
    // @{ \name Distributed arrays
    
    //! Writes distributed array \c data, of type \c type, to group \c GroupNameusing dataset name \c DataSetName
    void Write(const string& GroupName, const string& DataSetName, int MySize, int GlobalSize, int type, const void* data);

    //! Reads distributed array \c data, of type \c type, from group \c GroupNameusing dataset name \c DataSetName
    void Read(const string& GroupName, const string& DataSetName,
              int MySize, int GlobalSize,
              const int type, void* data);

    // @}
    // @{ \name Epetra_Map/Epetra_BlockMap

    //! Writes a Map to group \c GroupName.
    void Write(const string& GroupName, const Epetra_Map& Map);

    //! Reads a map from \c GroupName.
    void Read(const string& GroupName, Epetra_Map*& Map);

    //! Reads basic properties of specified Epetra_Map.
    void ReadMapProperties(const string& GroupName, 
                           int& NumGlobalElements,
                           int& IndexBase,
                           int& NumProc);

    //! Reads a block map from \c GroupName.
    void Read(const string& GroupName, Epetra_BlockMap*& Map);

    //! Writes a block map to group \c GroupName.
    void Write(const string& GroupName, const Epetra_BlockMap& Map);

    //! Reads basic properties of specified Epetra_BlockMap.
    void ReadBlockMapProperties(const string& GroupName, 
                                int& NumGlobalElements,
                                int& NumGlobalPoints,
                                int& IndexBase,
                                int& NumProc);

    // @}
    // @{ \name Epetra_CrsGraph

    //! Reads a vector from group \c GroupName, assumes linear distribution.
    void Read(const string& GroupName, Epetra_CrsGraph*& Graph);

    //! Reads a vector from group \c GroupName using given map.
    void Read(const string& GroupName, const Epetra_Map& DomainMap, 
              const Epetra_Map& RangeMap, Epetra_CrsGraph*& Graph);

    //! Writes a distributed vector to group \c GroupName.
    void Write(const string& GroupName, const Epetra_CrsGraph& Graph);

    //! Reads basic properties of specified Epetra_CrsGraph.
    void ReadCrsGraphProperties(const string& GroupName, 
                                int& NumGlobalRows,
                                int& NumGlobalCols,
                                int& NumGlobalNonzeros,
                                int& NumGlobalDiagonals,
                                int& MaxNumIndices);

    // @}
    // @{ \name Epetra_IntVector

    //! Writes a distributed vector to group \c GroupName.
    void Write(const string& GroupName, const Epetra_IntVector& x);

    //! Reads a vector from group \c GroupName, assumes linear distribution.
    void Read(const string& GroupName, Epetra_IntVector*& X);

    //! Reads a vector from group \c GroupName using given map.
    void Read(const string& GroupName, const Epetra_Map& Map, Epetra_IntVector*& X);

    //! Reads basic properties of specified Epetra_IntVector.
    void ReadIntVectorProperties(const string& GroupName, int& GlobalLength);

    // @}
    // @{ \name Epetra_MultiVector

    //! Writes a distributed vector to group \c GroupName, write transpose if writeTranspose set to true.
    void Write(const string& GroupName, const Epetra_MultiVector& x, bool writeTranspose = false);

    //! Reads a vector from group \c GroupName, assumes linear distribution. Read transpose if writeTranspose set to true.
    void Read(const string& GroupName, Epetra_MultiVector*& X,
              bool writeTranspose = false, const int& indexBase = 0);

    //! Reads a vector from group \c GroupName using given map. Read transpose if writeTranspose set to true.
    void Read(const string& GroupName, const Epetra_Map& Map, Epetra_MultiVector*& X,
              bool writeTranspose = false);

    //! Reads basic properties of specified Epetra_MultiVector.
    void ReadMultiVectorProperties(const string& GroupName, 
                                   int& GlobalLength,
                                   int& NumVectors);

    // @}
    // @{ \name Epetra_RowMatrix/Epetra_CrsMatrix

    //! Writes a distributed RowMatrix to group \c GroupName.
    void Write(const string& GroupName, const Epetra_RowMatrix& Matrix);

    //! Reads a square matrix from group \c GroupName, assumes linear distribution.
    void Read(const string& GroupName, Epetra_CrsMatrix*& A);

    //! Reads a matrix from group \c GroupName with given range and domain maps.
    void Read(const string& GroupName, 
              const Epetra_Map& DomainMap, 
              const Epetra_Map& RangeMap, 
              Epetra_CrsMatrix*& A);

    //! Reads basic properties of specified Epetra_CrsMatrix.
    void ReadCrsMatrixProperties(const string& GroupName, 
                                 int& NumGlobalRows,
                                 int& NumGlobalCols,
                                 int& NumNonzeros,
                                 int& NumGlobalDiagonals,
                                 int& MaxNumEntries,
                                 double& NormOne,
                                 double& NormInf);

    // @}
    // @{ \name Teuchos::ParameterList

    //! Writes a parameter list to group \c GroupName.
    void Write(const string& GroupName, const Teuchos::ParameterList& List);

    //! Reads a parameter list from group \c GroupName.
    void Read(const string& GroupName, Teuchos::ParameterList& List);

    // @}
    // @{ \name EpetraExt::DistArray<int>

    //! Writes an EpetraExt::DistArray<int> to group \c GroupName.
    void Write(const string& GroupName, const DistArray<int>& array);

    //! Reads an EpetraExt::DistArray<int> from group \c GroupName.
    void Read(const string& GroupName, DistArray<int>*& array);

    //! Reads an EpetraExt::DistArray<int> from group \c GroupName.
    void Read(const string& GroupName, const Epetra_Map& Map, DistArray<int>*& array);

    //! Reads the global number of elements and type for a generic handle object
    void ReadIntDistArrayProperties(const string& GroupName, 
                                    int& GlobalLength,
                                    int& RowSize);

    // @}
    // @{ \name EpetraExt::DistArray<double>

    //! Writes an EpetraExt::DistArray<int> to group \c GroupName.
    void Write(const string& GroupName, const DistArray<double>& array);

    //! Reads an EpetraExt::DistArray<int> from group \c GroupName.
    void Read(const string& GroupName, DistArray<double>*& array);

    //! Reads an EpetraExt::DistArray<int> from group \c GroupName.
    void Read(const string& GroupName, const Epetra_Map& Map, DistArray<double>*& array);

    //! Reads the global number of elements and type for a generic handle object
    void ReadDoubleDistArrayProperties(const string& GroupName, 
                                       int& GlobalLength,
                                       int& RowSize);
    // @}
    // @}
    // @{ \name Generic distributed object

    //! Writes an Epetra_DistObject to group \c GroupName.
    void Write(const string& GroupName, const Handle& List);

    //! Reads an Epetra_DistObject from group \c GroupName.
    void Read(const string& GroupName, Handle& List);

    //! Reads the global number of elements and type for a generic handle object
    void ReadHandleProperties(const string& GroupName, 
                              string& Type,
                              int& NumGlobalElements);

    // @}
  private:
    // @{ \name Private Data

    //! Returns a reference to the communicator of \c this object.
    const Epetra_Comm& Comm() const
    {
      return(Comm_);
    }

    //! Communicator of this object.
    const Epetra_Comm& Comm_; 
    //! FileName currently open.
    string FileName_;
    //! If \c true, a file is currently open.
    bool IsOpen_;

    //! file ID for HDF5.
    hid_t       file_id_;
    hid_t	plist_id_;
    herr_t	status;

    // @}
};
}
#endif
#endif /* EPETRAEXT_HDF5_H */