This file is indexed.

/usr/include/trilinos/DenseLinAlgPack_DVectorClassTmpl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef VECTOR_CLASS_TMPL_H
#define VECTOR_CLASS_TMPL_H

#include <vector>

#include "DenseLinAlgPack_Types.hpp"
#include "StrideIterPack_StrideIter.hpp"

namespace DenseLinAlgPack{

// ////////////////////////////////////////////////////////////////////////////////
/* * @name {\bf Dense 1-D DVector Abstractions}.
  *
  * These are classes that abstract 1-D vectors. The class \Ref{DVector} is a storage class
  * for vectors while the class \Ref{DVectorSlice} is used to represent regions of vectors
  * , for rows, columns or diagonals of matrices (see \Ref{DMatrix}
  * and \Ref{DMatrixSlice}).
  */

// @{

/* * @name {\bf DVector Classes}. */
// @{
  
/** \brief . */
/* * Slice of a 1-D sequential C++ array treated as a vector.
  *
  * Objects of this class represent regions of vectors (continuous), rows of matrices
  * , columns of matrices or diagonals of matrices.
  * The underlying representation is of a continuous C++ array with non unit stride.
  * It uses the same convention that the BLAS use where a vector is represented as
  * the first element of
  * in an array, the stride between elements in that array and the number of elements.
  * Changes to elements through a DVectorSlice object result in changes to the elements
  * in the underlying value_type* data.
  *
  * DVectorSlice provides many STL compliant features such as typedef type members
  *, iterator returning functions
  * and the dim() function.  It also provides access to individual elements (lvalue)
  * through 0-based
  * and 1-based subscripting with operator[](i) and operator()(i) respectively.
  *  In addition and subregions can be created
  * by subscripting (operator()()) with an \Ref{Range1D} object or using lower (>0)
  * and upper bounds of the region.
  */
template<class T>
class VectorSliceTmpl {
public:
  
  /* * @name {\bf Nested Member Types (STL)}.
    *
    * These nested types give the types used in the interface to the class.
    *
    * \begin{description}
    *	<li>[#value_type#]				- type being stored in the underlying C++ array			
    *	<li>[#size_type#]				- type used as an index and for the number of elements
    *										in the vector
    *	<li>[#difference_type#]		- type for the distance between elements and the stride
    *	<li>[#iterator#]				- type for the forward non-constant iterator
    *	<li>[#const_iterator#]			- type for the forward constant iterator (can't change elements)
    *	<li>[#reverse_iterator#]		- type for the reverse non-constant iterator
    *	<li>[#const_reverse_iterator#]	- type for the reverse constant iterator (can't change elements)
    *	<li>[#reference#]				- type returned from subscripting, iterator deferencing etc.
    *	<li>[#const_reference#]		- "" "" for const vector slice objects
    * \end{description}
    */

  // @{
  // @}

  typedef T												value_type;
  typedef DenseLinAlgPack::size_type							size_type;
  typedef ptrdiff_t										difference_type;
  typedef StrideIterPack::stride_iter<value_type*
    , value_type, value_type&, value_type*
    , difference_type>									iterator;
  typedef StrideIterPack::stride_iter<const value_type*
    , value_type, const value_type&, const value_type*
    , difference_type>									const_iterator;
#if defined(_INTEL_CXX) || defined (_INTEL_CXX)
  typedef std::reverse_iterator<iterator, value_type
    , value_type&, value_type*, difference_type>		reverse_iterator;
  typedef std::reverse_iterator<const_iterator
    , value_type, const value_type&, const value_type*
    , difference_type>									const_reverse_iterator;
#else
  typedef std::reverse_iterator<iterator>					reverse_iterator;
  typedef std::reverse_iterator<const_iterator>			const_reverse_iterator;
#endif
  typedef value_type&										reference;
  typedef const value_type&								const_reference;

  /* * @name {\bf Constructors}.
    *
    * The user usually does not need not call any of these constructors
    * explicitly to create a vector slice.
    * These
    * constructors are used by the classes in the library to construct VectorSliceTmpl objects.
    * Instead, users create VectorSliceTmpl objects by indexing (\Ref{Range1D}) a \Ref{DVector}
    * , or \Ref{VectorSliceTmpl}
    * object or calling row(...), col(...) or diag(...) on a \Ref{DMatrix} or
    * \Ref{DMatrixSlice} object.
    * The default C++ copy constructor is used, and is therefore not show here.
    *
    * Constructors are also included for creating views of raw C++ arrays.
    * These constructors take non-#const# pointers.  However you can savely
    * create a #const# view of a #const# C++ array by using a constant cast.
    * For example:
    *
    \verbatim
    const VectorSliceTmpl<T>::size_type n = 5;
    const VectorSliceTmpl<T>::value_type ptr[n] = { 1.0, 2.0, 3.0, 4.0, 5,0 };
    const VectorSliceTmpl vec(const_cast<VectorSliceTmpl<T>::value_type*>(ptr),n);
    \endverbatim
    */

  // @{

  /** \brief . */
  /* * Creates an empty view.
    *
    * You must use bind(...) to bind to a view to initialize after construction.
    */
  VectorSliceTmpl();
  /** \brief . */
  /* * Creates a VectorSice object that represents a non-continous region of a raw C++ array.
    *
    * Of course the sequence of elements #ptr[stride * i]# for #i# = 0, 1, ..., #size#-1
    * must yield valid properly allocated regions of memory.  It is up the the user to insure
    * that they do.
    *
    *	@param	ptr		Pointer to the first element in the raw C++ array
    * @param	size	number of elements in the vector slice
    * @param	stride	the distance (may be negative) between each successive element (default = 1)
    */
  VectorSliceTmpl( value_type* ptr, size_type size, difference_type stride = 1 );
  /** \brief . */
  /* * Creates a VectorSliceTmpl object that represents a continous region of a raw C++ array.
    *
    * The VectorSliceTmpl Object represents the following elements of raw array:
    * 
    *      #ptr[rng.lbound()-1+i]#, for #i# = 0, 1, ..., #rng.ubound()-1#
    * 
    * Preconditions: <ul>
    *		<li> #rng.ubound() + 1 <= n# (throw std::out_of_range)
    *		</ul>
    *
    *	@param	ptr		Pointer to the first element in the raw C++ array
    * @param	size	number of elements in the vector slice
    * @param	rng		index range (1-based) of the region being represented.  
    *					Here rng.full_range() can be true.
    */
  VectorSliceTmpl( value_type* ptr, size_type size, const Range1D& rng );
  /// 
  /* * Create a VectorSliceTmpl that represents a continous region of the existing VectorSliceTmpl object, vs.
    *
    * The index, rng, is relative to the VectorSliceTmpl object, vs.
    * For example rng = [1,3] would create a VectorSliceTmpl object
    * representing the elements 2, 4 and 6.  The following
    * shows the elements represented by each of the participating objects.
    \verbatim

    vs =   [2, 4, 6, 8, 10]
    this = [2, 4, 6]

    \endverbatim

    * Preconditions: <ul>
    *		<li> rng.full_range() == false (throw #std::out_of_range#)
    *		<li> rng.dim() <= vs.dim() (throw #std::out_of_range#) 
    *		</ul>
    * 
    * @param	vs		VectorSliceTmpl object that this VectorSliceTmpl object is being created from
    * @param	rng		Range1D range of the vector slice being created.
    */
  VectorSliceTmpl( VectorSliceTmpl<value_type>& vs, const Range1D& rng );

  // @}

  /// Bind to the view of another VectorSliceTmpl
  void bind(VectorSliceTmpl<value_type> vs);

  /* * @name {\bf STL Iterator Access Functions}.
    *
    * These member functions return valid STL random access iterators to the elements in the
    * VectorSliceTmpl object.
    *
    * The forward iterators returned by begin() and end() iterator sequentialy from the first
    * element (same element as returned by operator()(1)) to the last
    * element (same element as returned by operator()(dim()).  This goes for reverse 
    * (stride() < 0) VectorSliceTmpl objects as well.  The reverse iterators returned by
    * rbegin() and rend() iterate in the reverse sequence.
    *
    * Warning! Beware of using iterations in a reverse vector slice (stride() < 0). 
    * In a reverse vector slice end() returns a slice iterator which is the current
    * element is one before the first allocated element.  Strictly speaking this is
    * not allowed so use iterators with reversed VectorSliceTmpl objects at own risk.
    */

  // @{

  /// 
  iterator begin();
  /** \brief . */
  iterator end();
  /** \brief . */
  const_iterator begin() const;
  /** \brief . */
  const_iterator end() const;
  /** \brief . */
  reverse_iterator rbegin();
  /** \brief . */
  reverse_iterator rend();
  /** \brief . */
  const_reverse_iterator rbegin() const;
  /** \brief . */
  const_reverse_iterator rend() const;

  // @}

  /* * @name {\bf Individual Element Access Subscripting (lvalue)}.
    *
    * These operator functions allow access (lvalue) to the individual elements
    * of the VectorSliceTmpl object.
    * 
    * The subscript i must be, 1 <= i <= this->dim(), for the 1-based element access
    * operators and, 0 <= i <= this->dim() - 1, for the 0-based element access operators.
    * If they are not then an #std::out_of_range# exception will be thrown.
    */

  // @{

  /// 1-based element access (lvalue)
  reference operator()(size_type i);
  /// 1-based element access (rvalue)
  const_reference operator()(size_type i) const;
  /// 1-based element access (lvalue)
  reference operator[](size_type i);
  /// 0-based element access (rvalue)
  const_reference operator[](size_type i) const;

  // @}

  /* * @name {\bf Subvector Access Operators}.
    *
    * These operator functions are used to create views of continous regions of the VectorSliceTmpl.
    * Each of them returns a VectorSliceTmpl object for the region.  Constant (const) VectorSliceTmpl objects
    * are returned for a const VectorSliceTmpl.  This means that the elements can not be changed
    * as should be the case.
    * 
    * Beware!  VC++ is returning non-const VectorSliceTmpl objects for the 
    * #VectorSliceTmpl operator()(...) const;# member functions and therefore a const \Ref{DVector} or
    * \Ref{VectorSliceTmpl} can be modifed my subsetting it.  Hopefully this problem will
    * be fixed in future versions of the compiler or I when will get another compiler.
    */

  // @{

  /// 
  /* * Returns a VectorSliceTmpl object representing the entire vector slice.
    *
    * Included for uniformity with vector.
    */
  /// Allow the address to be taken of an rvalue of this object.
  VectorSliceTmpl<value_type>* operator&() {
    return this;
  }
  /** \brief . */
  const VectorSliceTmpl<value_type>* operator&() const {
    return this;
  }
  VectorSliceTmpl<value_type>& operator()();
  /// Same as above.
  const VectorSliceTmpl<value_type>& operator()() const;
  /// 
  VectorSliceTmpl<value_type> operator()(const Range1D& rng);
  /// 
  /* * Returns a continous subregion of the VectorSliceTmpl object.
    *
    * The returned VectorSliceTmpl object represents the range of the rng argument.
    *
    * Preconditions: <ul>
    *		<li> #rng.ubound() - 1 <= this->dim()# (throw #out_of_range#)
    *		</ul>
    *
    * @param	rng		Indece range [lbound,ubound] of the region being returned.
    */
  const VectorSliceTmpl<value_type> operator()(const Range1D& rng) const;
  /// 
  /* * Returns a VectorSliceTmpl object for the continous subregion [ubound, lbound].
    * 
    * Preconditions: <ul>
    *		<li> #lbound > 1# (throw out_of_range)
    *		<li> #lbound < ubound# (throw out_of_range)
    *		<li> #ubound <= this->dim()# (throw out_of_range)
    *		</ul>
    *
    * @param	rng		Range [lbound,ubound] of the region being returned.
    */
  VectorSliceTmpl<value_type> operator()(size_type lbound, size_type ubound);
  /// Same as above.
  const VectorSliceTmpl<value_type> operator()(size_type lbound, size_type ubound) const;
  /// 
  /* * Return a const VectorSliceTmpl object the reverse of this VectorSliceTmpl.
    *
    * In the reverse VectorSliceTmpl,
    * the first element becomes the last element and visa-versa.  For example, for 
    * #VectorSliceTmpl r = x.rev()#, #&x(1) == &z(z.dim())# and #&x(x.dim()) == &z(1)# are both true.
    * The iterators returned by \Ref{begin()} iterate from the first conceptual element to the last.
    */
  VectorSliceTmpl<value_type> rev();
  /// Same as above.
  const VectorSliceTmpl<value_type> rev() const;

  // @}
  
  /* * @name {\bf Assignment operators}. */

  // @{

  /** \brief . */
  /* * vs = alpha (Sets all the elements to the constant alpha).
    *
    * Preconditions: <ul>
    *		<li> #this->dim() > 0# (throw #std::length_error#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i) == alpha#, i = 1, 2, ... , #this->dim()#
    *		</ul>
    */
  VectorSliceTmpl<value_type>& operator=(value_type alpha);
  /** \brief . */
  /* * vs = rhs (Copies the elements of rhs into the elements of this).
    *
    * Preconditions: <ul>
    *		<li> #this->dim() == rhs.dim()# (throw #out_of_range#)
    *		<li> #rhs.dim() > 0# (throw #out_of_range#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i) == rhs(i)#, i = 1, 2, ..., #this->dim()#
    *		</ul>
    */
  VectorSliceTmpl<value_type>& operator=(const VectorSliceTmpl<value_type>& rhs);

  // @}

  /* * @name {\bf Misc. Member Functions}. */

  // @{

  /// Returns the number of elements of the VectorSliceTmpl.
  size_type dim() const;
  /// 
  /* * Returns the degree of memory overlap of the two VectorSliceTmpl objects this and vs.
    *
    * @return 
    *		\begin{description}
    *		<li>[NO_OVERLAP]	There is no memory overlap between this and vs
    *		<li>[SOME_OVERLAP]	There is some memory locations that this and vs share
    *		<li>[SAME_MEM]		The VectorSliceTmpl objects this and vs share the exact same memory locations.
    *		\end{description}
    */
  EOverLap overlap(const VectorSliceTmpl<value_type>& vs) const;

  // @}

  /* * @name {\bf Raw data access}.
    *
    * Provides access to underlying raw data.
    */

  // @{

  /// Return a pointer to the address of the first memory location of underlying array.
  value_type*			raw_ptr();
  /** \brief . */
  const value_type*	raw_ptr() const;
  /// Return a pointer to the conceptual first element in the underlying array.
  value_type*			start_ptr();
  /** \brief . */
  const value_type*	start_ptr() const;
  /// Return the distance (+,-) (in units of elements) between adjacent elements in the underlying array.
  difference_type		stride() const;

  // @}

private:
  value_type					*ptr_;	// Pointer to first element in array.
  size_type					size_;  // # elements represented in v_
  difference_type				stride_;// # positions to skip between elements. Must be positive
  // Above the sequence represented is:
  //  ptr_[ i * stride_ ], for i = 0, ..., size_ - 1

}; // end class VectorSliceTmpl<T>

// /////////////////////////////////////////////////////////////////////////////////////////
// DVector
//

/** \brief . */
/* * 1-D DVector Abstraction Storage Class.
  *
  * Holds the storage space for a 1-D vector of element type value_type.  The storage space class
  * used in a standard vector<> private member.  DVector provides much of the
  * same functionaliy of a VectorSliceTmpl object accept that DVector object can be resized at any time by
  * either explicitly calling #resize(...)# or to match an assignment to a rhs linear algebra expression.
  */
template<class T>
class VectorTmpl {
public:
  /* * @name {\bf Nested Member Types (STL)}.
    *
    * These nested types give the types used in the interface to the class.
    *
    * \begin{description}
    *	<li>[#value_type#]				- type being stored in the underlying vector<>			
    *	<li>[#size_type#]				- type for the number of elements in the vector<>
    *	<li>[#difference_type#]		- type for the distance between elements
    *	<li>[#iterator#]				- type for the forward non-constant iterator
    *	<li>[#const_iterator#]			- type for the forward constant iterator (can't change elements)
    *	<li>[#reverse_iterator#]		- type for the reverse non-constant iterator
    *	<li>[#const_reverse_iterator#]	- type for the reverse constant iterator (can't change elements)
    *	<li>[#reference#]				- type returned from subscripting, iterator deferencing etc.
    *	<li>[#const_reference#]		- "" "" for const vector slice objects
    * \end{description}
    */

  // @{
  // @}

  typedef T										value_type;
  typedef DenseLinAlgPack::size_type					size_type;
  typedef ptrdiff_t								difference_type;
  typedef value_type*								iterator;
  typedef const value_type*						const_iterator;
#if 0 /* defined(_INTEL_CXX) || defined(_WINDOWS) */
  typedef std::reverse_iterator<iterator, value_type
    , value_type&, value_type*, difference_type>		reverse_iterator;
  typedef std::reverse_iterator<const_iterator
    , value_type, const value_type&, const value_type*
    , difference_type>									const_reverse_iterator;
#else
  typedef std::reverse_iterator<iterator>					reverse_iterator;
  typedef std::reverse_iterator<const_iterator>			const_reverse_iterator;
#endif
  typedef value_type&								reference;
  typedef const value_type&						const_reference;
  typedef std::vector<value_type>					valarray;

  /* * @name {\bf Constructors}.
    * 
    * These constructors allocate and may initialize the elements of a 1-D vector.
    * The default C++ copy constructor is used and is therefore not show here.
    */

  // @{

  /// Constructs a vector with 0 elements (this->dim()==0).
  VectorTmpl();
  /// Constructs a vector with n elements of initialized memory.
  VectorTmpl(size_type n);
  /// Constructs a vector with n elements initialized to val.
  VectorTmpl(value_type val, size_type n);
  /** \brief . */
  /* * Constructs a vector with n elements and intializes elements to those of an array.
    *
    * Postconditions: <ul>
    *		<li> #this->operator[](i) == p[i]#, i = 0, 1, ... n
    *		</ul>
    */  
  VectorTmpl(const value_type* p, size_type n);
  /** \brief . */
  /* * Constructs a DVector object fron a VectorSliceTmpl object.
    *
    * Postconditions: <ul>
    *		<li> #this->dim() == vs.dim()#
    *		<li> #this->operator[](i) == vs[i]#, i = 0, 1, ... n
    *		</ul>
    */  
  VectorTmpl(const VectorSliceTmpl<value_type>& vs);

  // @}

  /* * @name {\bf Memory Management / Misc}. */

  // @{

  /** \brief . */
  /* * Resize the vector to hold n elements.
    *
    * Any new elements added are initialized to val.
    *
    * Postconditions: <ul>
    *		<li> #this->dim() == n#
    *		</ul>
    */  
  void resize(size_type n, value_type val = value_type());
  /** \brief . */
  /* * Free memory and resize DVector to this->dim() == 0.
    *
    * Postconditions: <ul>
    *		<li> #this->dim() == 0#
    *		</ul>
    */  
  void free();
  /// Returns the number of elements of the DVector.
  size_type dim() const;
  /// 
  /* * Returns the degree of memory overlap of this and the VectorSliceTmpl object vs.
    *
    * @return 
    *		\begin{description}
    *		<li>[NO_OVERLAP]	There is no memory overlap between this and vs
    *		<li>[SOME_OVERLAP]	There is some memory locations that this and vs share
    *		<li>[SAME_MEM]		The VectorSliceTmpl objects this and vs share the exact same memory locations.
    *		\end{description}
    */
  EOverLap overlap(const VectorSliceTmpl<value_type>& vs) const;
  /// Conversion operator for implicit conversions from DVector to VectorSliceTmpl.
  operator VectorSliceTmpl<value_type>();
  /// Conversion operator for implicit conversions from const DVector to const VectorSliceTmpl.
  operator const VectorSliceTmpl<value_type>() const;

  // @}
  

  /* * @name {\bf STL Iterator Access functions}.
    *
    * The iterators returned are valid STL random access iterators.
    * The forward iterators returned iterate from the first element to the last element.
    * The reverse iterators returned iterate from the last element to the first element.
    */

  // @{

  /** \brief . */
  iterator begin();
  /** \brief . */
  iterator end();
  /** \brief . */
  const_iterator begin() const;
  /** \brief . */
  const_iterator end() const;
  /** \brief . */
  reverse_iterator rbegin();
  /** \brief . */
  reverse_iterator rend();
  /** \brief . */
  const_reverse_iterator rbegin() const;
  /** \brief . */
  const_reverse_iterator rend() const;

  // @}

  /* * @name {\bf Individual Element Access Subscripting (lvalue)}.
    *
    * These operator functions allow access (lvalue) to the individual elements
    * of the DVector object.
    * 
    * The subscript i must be, 1 <= i <= this->dim(), for the 1-based element access
    * operators and, 0 <= i <= this->dim() - 1, for the 0-based element access operators.
    * If they are not then an #std::out_of_range# exception will be thrown.
    */

  // @{

  /// 1-based element access (lvalue)
  reference operator()(size_type i);
  /// 1-based element access (rvalue)
  const_reference operator()(size_type i) const;
  /// 1-based element access (lvalue)
  reference operator[](size_type i);
  /// 0-based element access (rvalue)
  const_reference operator[](size_type i) const;

  // @}

  /* * @name {\bf Subvector Access Operators}.
    *
    * These operator functions are used to create views of continous regions of the DVector.
    * Each of them returns a VectorSliceTmpl object for the region.  Constant (const) VectorSliceTmpl objects
    * are returned for a const DVector.  This means that the elements can not be changed
    * as should be the case.
    * 
    * Beware!  VC++ is returning non-const VectorSliceTmpl objects for the 
    * #VectorSliceTmpl operator()(...) const;# member functions and therefore a const \Ref{DVector} or
    * \Ref{VectorSliceTmpl} can be modifed my subsetting it.  Hopefully this problem will
    * be fixed in future versions of the compiler or I when will get another compiler.
    */

  // @{

  /// 
  /* * Returns a VectorSliceTmpl object representing the entire DVector. 
    * 
    * Call this member function to force a type conversion to VectorSliceTmpl.  Using the
    * VectorSliceTmpl of a DVector for algebraic expressions used with the TCOL allows a for simplier
    * implementaion of those operations by cutting down on the number combinations.  This is
    * especialy true for longer optimized expression.
    */
  VectorSliceTmpl<value_type> operator()();
  /// Same as above
  const VectorSliceTmpl<value_type> operator()() const;
  /// 
  /* * Returns a continous subregion of the DVector object.
    *
    * The returned VectorSliceTmpl object represents the range of the rng argument.
    *
    * Preconditions: <ul>
    *		<li> #rng.ubound() - 1 <= this->dim()# (throw #out_of_range#)
    *		</ul>
    *
    * @param	rng		Indece range [lbound,ubound] of the region being returned.
    */
  VectorSliceTmpl<value_type> operator()(const Range1D& rng);
  /// Same as above
  const VectorSliceTmpl<value_type> operator()(const Range1D& rng) const;
  /// 
  /* * Returns a VectorSliceTmpl object for the continous subregion [ubound, lbound].
    * 
    * Preconditions: <ul>
    *		<li> #lbound > 1# (throw #out_of_range#)
    *		<li> #lbound < ubound# (throw #out_of_range#)
    *		<li> #ubound <= this->dim()# (throw #out_of_range#)
    *		</ul>
    *
    * @param	rng		Range [lbound,ubound] of the region being taken.
    */
  VectorSliceTmpl<value_type> operator()(size_type lbound, size_type ubound);
  /// Same as above.
  const VectorSliceTmpl<value_type> operator()(size_type lbound, size_type ubound) const;
  /// 
  /* * Return a VectorSliceTmpl object the reverse of this DVector.
    *
    * In the reverse VectorSliceTmpl,
    * the first element becomes the last element and visa-versa.  For example, for 
    * #VectorSliceTmpl r = x.rev()#, #&x(1) == &z(z.dim())# and #&x(x.dim()) == &z(1)# are both true.
    * The iterators returned by \Ref{begin()} iterate from the first conceptual element to the last.
    */
  VectorSliceTmpl<value_type> rev();
  /// Same as above.
  const VectorSliceTmpl<value_type> rev() const;

  // @}

  /* * @name {\bf Assignment Operators}. */

  // @{

  /** \brief . */
  /* * vs = alpha (Sets all the elements to the constant alpha).
    *
    * Preconditions: <ul>
    *		<li> #this->dim() > 0# (throw #std::length_error#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i) == alpha#, i = 1, 2, ... , #this->dim()#
    *		</ul>
    */
  VectorTmpl<value_type>& operator=(value_type alpha);
  /** \brief . */
  /* * vs = rhs (Copies the elements of rhs into the elements of this).
    *
    * Preconditions: <ul>
    *		<li> #this->dim() == rhs.dim()# (throw #out_of_range#)
    *		<li> #rhs.dim() > 0# (throw #out_of_range#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i) == rhs(i)#, i = 1, 2, ..., #this->dim()#
    *		</ul>
    */
  VectorTmpl<value_type>& operator=(const VectorSliceTmpl<value_type>& rhs);
  /** \brief . */
  /* * Needed to override the default assignment operator.
    */
  VectorTmpl<value_type>& operator=(const VectorTmpl<value_type>& rhs);

  // @}

  /* * @name {\bf Implementation Access}.
    *
    * Provides access to underlying raw data.
    */

  // @{

  /// Return a pointer to the address of the first memory location of underlying array.
  value_type*			raw_ptr();
  /** \brief . */
  const value_type*	raw_ptr() const;
  /// Return a pointer to the conceptual first element in the underlying array.
  value_type*			start_ptr();
  /** \brief . */
  const value_type*	start_ptr() const;
  /// Return the distance (+,-) (in units of elements) between adjacent elements in the underlying array.
  difference_type		stride() const;

  // @}
  
private:
  valarray v_;

}; // end class VectorTmpl<T>

//		end DVector Classes scope
// @}

// ///////////////////////////////////////////////////////////////////////////////
// Non-member function declarations												//
// ///////////////////////////////////////////////////////////////////////////////


/* * @name {\bf Non-Member Functions}. */

// @{
//		begin non-member functions scope

//
size_type vector_validate_sized(size_type size);
//
void vector_validate_range(size_type ubound, size_type max_ubound);
//
void vector_validate_subscript(size_type size, size_type i);
/** \brief . */
/* * Utility for checking the sizes of two VectorSliceTmpl objects and throwing an exception
  * if the sizes are not the same.
  */
void assert_vs_sizes(size_type size1, size_type size2);

/** \brief . */
/* * Create a general vector slice.
  */
template<class T>
inline
VectorSliceTmpl<T> gen_vs( VectorSliceTmpl<T>& vs, size_type start, size_type size, ptrdiff_t stride )
{
  return VectorSliceTmpl<T>( vs.start_ptr() + vs.stride() * (start-1), size, vs.stride() * stride );
}

/** \brief . */
template<class T>
inline
const VectorSliceTmpl<T> gen_vs( const VectorSliceTmpl<T>& vs, size_type start, size_type size
  , ptrdiff_t stride )
{
  return VectorSliceTmpl<T>( const_cast<typename VectorSliceTmpl<T>::value_type*>(vs.start_ptr()) + vs.stride() * (start-1)
    , size, vs.stride() * stride );
}

//		end non-member functions scope
// @}

//		end Vectors scope
// @}

} // end namespace DenseLinAlgPack

// ////////////////////////////////////////////////////////////////////////////////
// Inline definitions of member function definitions							 //
// ////////////////////////////////////////////////////////////////////////////////

// ////////////////////////////////////////////////////////////////////////
// Non-member functions / utilities

#ifndef LINALGPACK_CHECK_SLICE_SETUP
inline
DenseLinAlgPack::size_type DenseLinAlgPack::vector_validate_sized(size_type size)
{
  return size;
}
#endif

#ifndef LINALGPACK_CHECK_RANGE
inline
void DenseLinAlgPack::vector_validate_range(size_type ubound, size_type max_ubound)
{}
#endif

#ifndef LINALGPACK_CHECK_RANGE
inline
void DenseLinAlgPack::vector_validate_subscript(size_type size, size_type i)
{}
#endif

#ifndef LINALGPACK_CHECK_RHS_SIZES
inline
void DenseLinAlgPack::assert_vs_sizes(size_type size1, size_type size2)
{}
#endif

namespace DenseLinAlgPack {

// /////////////////////////////////////////////////////////////////////////////
// VectorSliceTmpl inline member function definitions

// Constructors.  Use default copy constructor

template<class T>
inline
VectorSliceTmpl<T>::VectorSliceTmpl()
  : ptr_(0)
  , size_(0)
  , stride_(0)
{}

template<class T>
inline
VectorSliceTmpl<T>::VectorSliceTmpl( value_type* ptr, size_type size, difference_type stride)
  : ptr_(ptr)
  , size_(size)
  , stride_(stride)
{}

template<class T>
inline
VectorSliceTmpl<T>::VectorSliceTmpl( value_type* ptr, size_type size, const Range1D& rng )
  : ptr_( ptr + rng.lbound() - 1 )
  , size_( rng.full_range() ?	vector_validate_sized(size) : rng.size() )
  , stride_(1)
{
  vector_validate_range( rng.full_range() ? size : rng.ubound(), size );
}

template<class T>
inline
VectorSliceTmpl<T>::VectorSliceTmpl( VectorSliceTmpl<T>& vs, const Range1D& rng )
  : ptr_( vs.start_ptr() + (rng.lbound() - 1) * vs.stride() )
  , size_( rng.full_range() ?	vector_validate_sized(vs.dim()) : rng.size() )
  , stride_( vs.stride() )
{	vector_validate_range(  rng.full_range() ? vs.dim() : rng.ubound(), vs.dim() ); }

template<class T>
inline
void VectorSliceTmpl<T>::bind(VectorSliceTmpl vs)
{
  ptr_	= vs.ptr_;
  size_	= vs.size_;
  stride_	= vs.stride_;
}

// Iterator functions
template<class T>
inline
typename VectorSliceTmpl<T>::iterator	VectorSliceTmpl<T>::begin()
{	return iterator(start_ptr(), stride()); }

template<class T>
inline
typename VectorSliceTmpl<T>::iterator	VectorSliceTmpl<T>::end()
{	return iterator(start_ptr() + dim() * stride(), stride()); }

template<class T>
inline
typename VectorSliceTmpl<T>::const_iterator VectorSliceTmpl<T>::begin() const
{	return const_iterator(start_ptr(), stride()); }

template<class T>
inline
typename VectorSliceTmpl<T>::const_iterator VectorSliceTmpl<T>::end() const
{	return const_iterator(start_ptr() + dim() * stride(), stride()); }

template<class T>
inline
typename VectorSliceTmpl<T>::reverse_iterator	VectorSliceTmpl<T>::rbegin()
{	return reverse_iterator(end()); }

template<class T>
inline
typename VectorSliceTmpl<T>::reverse_iterator	VectorSliceTmpl<T>::rend()
{	return reverse_iterator(begin()); }

template<class T>
inline
typename VectorSliceTmpl<T>::const_reverse_iterator VectorSliceTmpl<T>::rbegin() const
{	return const_reverse_iterator(end()); }

template<class T>
inline
typename VectorSliceTmpl<T>::const_reverse_iterator VectorSliceTmpl<T>::rend() const
{	return const_reverse_iterator(begin()); }

// Element access
template<class T>
inline
typename VectorSliceTmpl<T>::reference VectorSliceTmpl<T>::operator()(size_type i) // 1 based
{
  vector_validate_subscript(dim(),i);
  return ptr_[(i-1)*stride_];
}

template<class T>
inline
typename VectorSliceTmpl<T>::const_reference VectorSliceTmpl<T>::operator()(size_type i) const
{
  vector_validate_subscript(dim(),i);
  return ptr_[(i-1)*stride_];
}

template<class T>
inline
typename VectorSliceTmpl<T>::reference VectorSliceTmpl<T>::operator[](size_type i) // 0 based		
{
  vector_validate_subscript(dim(),i+1);
  return ptr_[(i)*stride_];
}

template<class T>
inline
typename VectorSliceTmpl<T>::const_reference VectorSliceTmpl<T>::operator[](size_type i) const
{
  vector_validate_subscript(dim(),i+1);
  return ptr_[(i)*stride_];
}

// Subregion Access.  Let the constructors of VectorSliceTmpl validate the ranges
template<class T>
inline
VectorSliceTmpl<T>& VectorSliceTmpl<T>::operator()() 
{	return *this; }

template<class T>
inline
const VectorSliceTmpl<T>& VectorSliceTmpl<T>::operator()() const 
{	return *this; }

template<class T>
inline
VectorSliceTmpl<T> VectorSliceTmpl<T>::operator()(const Range1D& rng) 
{	return VectorSliceTmpl(*this, RangePack::full_range(rng,1,dim())); }

template<class T>
inline
const VectorSliceTmpl<T> VectorSliceTmpl<T>::operator()(const Range1D& rng) const
{	return VectorSliceTmpl(const_cast<VectorSliceTmpl<T>&>(*this), RangePack::full_range(rng,1,dim())); }

template<class T>
inline
VectorSliceTmpl<T> VectorSliceTmpl<T>::operator()(size_type lbound, size_type ubound)
{	return VectorSliceTmpl(*this, Range1D(lbound, ubound)); }

template<class T>
inline
const VectorSliceTmpl<T> VectorSliceTmpl<T>::operator()(size_type lbound, size_type ubound) const
{	return VectorSliceTmpl(const_cast<VectorSliceTmpl<T>&>(*this), Range1D(lbound, ubound)); }

template<class T>
inline
VectorSliceTmpl<T> VectorSliceTmpl<T>::rev()
{	return VectorSliceTmpl( start_ptr() + stride() * (dim()-1), dim(), - stride() ); }

template<class T>
inline
const VectorSliceTmpl<T> VectorSliceTmpl<T>::rev() const
{	return VectorSliceTmpl( const_cast<value_type*>(start_ptr()) + stride() * (dim()-1), dim(), - stride() ); }

// Assignment Operators
template<class T>
inline
VectorSliceTmpl<T>& VectorSliceTmpl<T>::operator=(value_type alpha)
{
  std::fill(begin(),end(),alpha);
  return *this;
}

template<class T>
inline
VectorSliceTmpl<T>& VectorSliceTmpl<T>::operator=(const VectorSliceTmpl<T>& rhs) 
{
  assert_vs_sizes(this->dim(),rhs.dim());
  std::copy(rhs.begin(),rhs.end(),begin());
  return *this;
}

// Misc. member functions

template<class T>
inline
typename VectorSliceTmpl<T>::size_type VectorSliceTmpl<T>::dim() const
{	return size_; }

// Raw pointer access

template<class T>
inline
typename VectorSliceTmpl<T>::value_type*	VectorSliceTmpl<T>::raw_ptr()
{	return stride() > 0 ? start_ptr() : start_ptr() + stride() * (dim() - 1); }

template<class T>
inline
const typename VectorSliceTmpl<T>::value_type* VectorSliceTmpl<T>::raw_ptr() const
{	return stride() > 0 ? start_ptr() : start_ptr() + stride() * (dim() - 1); }

template<class T>
inline
typename VectorSliceTmpl<T>::value_type*	VectorSliceTmpl<T>::start_ptr()
{	return ptr_; }

template<class T>
inline
const typename VectorSliceTmpl<T>::value_type* VectorSliceTmpl<T>::start_ptr() const
{	return ptr_; }

template<class T>
inline
typename VectorSliceTmpl<T>::difference_type VectorSliceTmpl<T>::stride() const
{	return stride_; }

// /////////////////////////////////////////////////////////////////////////////
// DVector inline member function definitions

// Constructors
template<class T>
inline
VectorTmpl<T>::VectorTmpl()
{}	// used to shut satisfy compiler

template<class T>
inline
VectorTmpl<T>::VectorTmpl(size_type n) 
  : v_(n)
{}

template<class T>
inline
VectorTmpl<T>::VectorTmpl(value_type val, size_type n) 
  : v_(n)
{
  std::fill(begin(),end(),val);
}

template<class T>
inline
VectorTmpl<T>::VectorTmpl(const value_type* p, size_type n)
  : v_(n)
{
  std::copy(p,p+n,begin());
}

template<class T>
inline
VectorTmpl<T>::VectorTmpl(const VectorSliceTmpl<T>& vs)
  : v_(vs.dim())
{  
  std::copy(vs.begin(),vs.end(),begin());
}

// Memory management
template<class T>
inline
void VectorTmpl<T>::resize(size_type n, value_type val)
{
  v_.resize(n);
  std::fill(begin(),end(),val);
 }

template<class T>
inline
void VectorTmpl<T>::free()
{
  v_.resize(0);
}

// Size
template<class T>
inline
typename VectorTmpl<T>::size_type VectorTmpl<T>::dim() const
{	return v_.size(); }

// Iterator functions
template<class T>
inline
typename VectorTmpl<T>::iterator VectorTmpl<T>::begin()
{	return start_ptr(); }

template<class T>
inline
typename VectorTmpl<T>::iterator VectorTmpl<T>::end()
{	return start_ptr() + dim(); }

template<class T>
inline
typename VectorTmpl<T>::const_iterator VectorTmpl<T>::begin() const
{	return start_ptr(); }

template<class T>
inline
typename VectorTmpl<T>::const_iterator VectorTmpl<T>::end() const 
{	return start_ptr() + dim(); }

template<class T>
inline
typename VectorTmpl<T>::reverse_iterator	VectorTmpl<T>::rbegin()
{	return reverse_iterator(end()); }

template<class T>
inline
typename VectorTmpl<T>::reverse_iterator	VectorTmpl<T>::rend()
{	return reverse_iterator(begin()); }

template<class T>
inline
typename VectorTmpl<T>::const_reverse_iterator VectorTmpl<T>::rbegin() const
{	return const_reverse_iterator(end()); }

template<class T>
inline
typename VectorTmpl<T>::const_reverse_iterator VectorTmpl<T>::rend() const 
{	return const_reverse_iterator(begin()); }

// Element access
template<class T>
inline
typename VectorTmpl<T>::reference VectorTmpl<T>::operator()(size_type i)
{
  vector_validate_subscript(dim(),i);
  return start_ptr()[i-1];
}

template<class T>
inline
typename VectorTmpl<T>::const_reference VectorTmpl<T>::operator()(size_type i) const
{
  vector_validate_subscript(dim(),i);
  return start_ptr()[i-1];
}

template<class T>
inline
typename VectorTmpl<T>::reference VectorTmpl<T>::operator[](size_type i)
{
  vector_validate_subscript(dim(),i+1);
  return start_ptr()[i];
}

template<class T>
inline
typename VectorTmpl<T>::const_reference VectorTmpl<T>::operator[](size_type i) const
{
  vector_validate_subscript(dim(),i+1);
  return start_ptr()[i];
}

// Subregion Access.  Leave validation to the VectorSliceTmpl constructors.
template<class T>
inline
VectorSliceTmpl<T> VectorTmpl<T>::operator()() 
{	return VectorSliceTmpl<T>(start_ptr(),dim()); }

template<class T>
inline
const VectorSliceTmpl<T> VectorTmpl<T>::operator()() const
{	return VectorSliceTmpl<T>(const_cast<value_type*>(start_ptr()),dim()); }

template<class T>
inline
VectorSliceTmpl<T> VectorTmpl<T>::operator()(const Range1D& rng) 
{	return VectorSliceTmpl<T>(start_ptr(),dim(),rng); }

template<class T>
inline
const VectorSliceTmpl<T> VectorTmpl<T>::operator()(const Range1D& rng) const
{	return VectorSliceTmpl<T>(const_cast<value_type*>(start_ptr()),dim(),rng); }

template<class T>
inline
VectorSliceTmpl<T> VectorTmpl<T>::operator()(size_type lbound, size_type ubound)
{	return VectorSliceTmpl<T>(start_ptr(), dim(), Range1D(lbound, ubound)); }

template<class T>
inline
const VectorSliceTmpl<T> VectorTmpl<T>::operator()(size_type lbound, size_type ubound) const
{	return VectorSliceTmpl<T>(const_cast<value_type*>(start_ptr()), dim(), Range1D(lbound, ubound)); }

template<class T>
inline
VectorSliceTmpl<T> VectorTmpl<T>::rev()
{	return VectorSliceTmpl<T>( start_ptr() + dim() - 1, dim(), -1 ); }

template<class T>
inline
const VectorSliceTmpl<T> VectorTmpl<T>::rev() const
{	return VectorSliceTmpl<T>( const_cast<value_type*>(start_ptr()) + dim() - 1, dim(), -1 ); }

// Conversion operators
template<class T>
inline
VectorTmpl<T>::operator VectorSliceTmpl<T>()
{	return VectorSliceTmpl<T>(start_ptr(), dim()); }

template<class T>
inline
VectorTmpl<T>::operator const VectorSliceTmpl<T>() const
{	return VectorSliceTmpl<T>(const_cast<value_type*>(start_ptr()), dim()); }

// Assignment Operators
template<class T>
inline
VectorTmpl<T>& VectorTmpl<T>::operator=(value_type alpha) 
{
  if(!dim()) resize(1);
  std::fill(begin(),end(),alpha);
  return *this;
}

template<class T>
inline
VectorTmpl<T>& VectorTmpl<T>::operator=(const VectorTmpl<T>& rhs) 
{
  resize(rhs.dim());
  std::copy(rhs.begin(),rhs.end(),begin());
  return *this;
}

template<class T>
inline
VectorTmpl<T>& VectorTmpl<T>::operator=(const VectorSliceTmpl<T>& rhs) 
{
  resize(rhs.dim());
  std::copy(rhs.begin(),rhs.end(),begin());
  return *this;
}

// Raw pointer access

template<class T>
inline
typename VectorTmpl<T>::value_type*	VectorTmpl<T>::raw_ptr()
{	return start_ptr(); }

template<class T>
inline
const typename VectorTmpl<T>::value_type* VectorTmpl<T>::raw_ptr() const
{	return start_ptr(); }

template<class T>
inline
typename VectorTmpl<T>::value_type*	VectorTmpl<T>::start_ptr()
{	return dim() ? &(v_)[0] : 0; }

template<class T>
inline
const typename VectorTmpl<T>::value_type* VectorTmpl<T>::start_ptr() const
{	return &const_cast<valarray&>((v_))[0]; }

template<class T>
inline
typename VectorTmpl<T>::difference_type VectorTmpl<T>::stride() const
{	return 1; }

// //////////////////////////////////////////////////
// Non-inlined members

// Assume that the vector slices are the rows, cols or diag of a 2-D matrix.
template<class T>
EOverLap VectorSliceTmpl<T>::overlap(const VectorSliceTmpl<value_type>& vs) const {

  const typename VectorSliceTmpl<T>::value_type
    *raw_ptr1 = ( stride() > 0 ? start_ptr() : start_ptr() + (dim()-1)*stride() ),
    *raw_ptr2 = ( vs.stride() > 0 ? vs.start_ptr() : vs.start_ptr() + (vs.dim()-1)*vs.stride() );
  typename VectorSliceTmpl<T>::size_type
    size1 = dim(),
    size2 = vs.dim();
  typename VectorSliceTmpl<T>::difference_type
    stride1 = std::abs(stride()),
    stride2 = std::abs(vs.stride());

  // Establish a frame of reference where raw_ptr1 < raw_ptr2
  if(raw_ptr1 > raw_ptr2) {
    std::swap(raw_ptr1,raw_ptr2);
    std::swap(stride1,stride2);
    std::swap(size1,size2);
  }

  if( raw_ptr1 + stride1 * (size1 - 1) < raw_ptr2 ) {
    return NO_OVERLAP; // can't be any overlap
  }

  typename VectorSliceTmpl<T>::size_type
    start1 = 0,
    start2 = raw_ptr2 - raw_ptr1;

  if(start1 == start2 && stride1 == stride2 && size1 == size2)
    return SAME_MEM;
//	else if(start1 == start2)
//		return SOME_OVERLAP;	// First elements are the same
//	else if(stride1 + (size1 - 1) * stride1 == stride2 + (size2 - 1) * stride2)
//		return SOME_OVERLAP;	// Last elements are the same
  else if(stride1 == stride2) {
    if(!((start2 - start1) % stride1))
      return SOME_OVERLAP;
    else
      return NO_OVERLAP; // a different row, col or diag of a matrix
  }
  else {
    if(stride1 == 1 || stride2 == 1) {
      // One of them is a column vector.
      // Make vs1 the column vector.
      bool switch_them = (stride2 == 1);
      if(switch_them) {
        std::swap(start1,start2);
        std::swap(stride1,stride2);
        std::swap(size1,size2);
      }

      // Determine if the other vector could be row vector
      // or must be a diag vector.  If using stride2 makes
      // the first and last elements of the column vector
      // on different rows, then the other vector must be a diagonal.
      // col_first = start1/stride2, col_last = (start1+size1-1)/stride2
      // if(col_last - col_first > 0) then vs2 must be a diagonal vector
      // with max_rows = stride2 - 1.
      size_t max_rows = (start1+size1-1)/stride2 - start1/stride2 > 0 ? stride2 - 1 : stride2;

      // find the index (0-based) of vs2 that intersects this column.
      size_t vs2_col_i = start1/max_rows - start2/max_rows;
      
      // See if the first element of the column is above the element in vs2
      // and the last element of the column is below the element.  If it is
      // then we conclude that there is an itersection.
      size_t vs2_col_rng = start2 + vs2_col_i * stride2;
      if(start1 <= vs2_col_rng && vs2_col_rng <= start1+size1-1)
        return SOME_OVERLAP;
      else
        return NO_OVERLAP;
    }
    // They are not the same and nether is a column vector so one is a row vector
    // and the other is a diagonal vector.
    // Nether is a column vector so choose as vs1 the row vector (the smaller stride).
    bool switch_them = stride2 < stride1;
    if(switch_them) {
      std::swap(start1,start2);
      std::swap(stride1,stride2);
      std::swap(size1,size2);
    }

    size_t max_rows = stride1;
    // Determine the first and last columns (0-based) in the original
    // matrix where there vs1 and vs2 intersect.
    size_t	sec_first_col = (start1 > start2) ? start1/max_rows : start2/max_rows,
        last1 = start1 + (size1 - 1) * stride1,
        last2 = start2 + (size2 - 1) * stride2,
        sec_last_col = (last1 < last2) ? last1/max_rows : last2/max_rows;
    // Determine the vector indexes (0-based) of vs1 and vs2 for the start and end
    // in this region
    size_t	vs1_first_col = start1 / max_rows,
        vs2_first_col = start2 / max_rows;
    
    // Determine the indexes in the valarray of the two vectors for the two ends
    size_t	vs1_first_col_i = sec_first_col - vs1_first_col,
        vs1_last_col_i = sec_last_col - vs1_first_col,
        vs2_first_col_i = sec_first_col - vs2_first_col,
        vs2_last_col_i = sec_last_col - vs2_first_col;

    // Compare the indexes in the valarray at the two ends.  If they cross then
    // there must be an element of overlap.  Uses equivalent of the intermediate
    // value therorm.
    // Must cast to an int that can hold a negative value
    ptrdiff_t	diff1 = (start1 + vs1_first_col_i * stride1) 
            - static_cast<ptrdiff_t>((start2 + vs2_first_col_i * stride2)),
          diff2 = (start1 + vs1_last_col_i * stride1) 
            - static_cast<ptrdiff_t>((start2 + vs2_last_col_i * stride2));
    if(diff1 * diff2 > 0 )
      return NO_OVERLAP;		// they do not cross
    else
      return SOME_OVERLAP;	// they share an element
  }
}

template<class T>
EOverLap VectorTmpl<T>::overlap(const VectorSliceTmpl<value_type>& vs) const {

  const typename VectorSliceTmpl<T>::value_type
    *raw_ptr1 = ( stride() > 0 ? start_ptr() : start_ptr() + (dim()-1)*stride() ),
    *raw_ptr2 = ( vs.stride() > 0 ? vs.start_ptr() : vs.start_ptr() + (vs.dim()-1)*vs.stride() );
  typename VectorSliceTmpl<T>::size_type
    size1 = dim(),
    size2 = vs.dim();

  if( raw_ptr1 <= raw_ptr2 && raw_ptr2 + size2 <= raw_ptr1 + size1 ) {
    if( raw_ptr1 == raw_ptr2 && size1 == size2 && 1 == vs.stride() )
      return SAME_MEM;
    return SOME_OVERLAP;
  }
  return NO_OVERLAP;
}

} // end namespace DenseLinAlgPack

#endif	// end VECTOR_CLASS_TMPL_H