This file is indexed.

/usr/include/trilinos/DenseLinAlgPack_DMatrixClass.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER
//
// General matrix and matrix region (slice) classes

#ifndef GEN_MATRIX_CLASS_H
#define GEN_MATRIX_CLASS_H

#include "DenseLinAlgPack_DVectorClass.hpp"
#include "DenseLinAlgPack_DMatrixAssign.hpp"

/* * @name {\bf Dense 2-D Rectangular Matrix Absractions}.
  *
  * The class DMatrix is a storage class for 2-D matrices while the class DMatrixSlice
  * is used to represent rectangular regions of a DMatrix object.
  */
// @{
//		begin General Rectangular 2-D Matrices scope

namespace DenseLinAlgPack {

class DMatrix;

/* * @name {\bf General Matrix Classes}. */
// @{

// ////////////////////////////////////////////////////////////////////////////////////////////////////////
// GenMatrixClass
//

/** \brief . */
/* * 2-D General Rectangular Matrix Subregion Class (Slice) (column major).
  *
  * This class is used to represent a rectangular matrix.  It uses a BLAS-like
  * slice of a raw C++ array.  Objects of this class can represent
  * an entire matrix or any rectangular subregion of a matrix.
  */
class DMatrixSlice {
public:
  /* * @name {\bf Nested Member Types (STL)}.
    *
    * These nested types give the types used in the interface to the class.
    *
    * \begin{description}
    *	<li>[#value_type#]				- type being stored in the underlying valarray<>			
    *	<li>[#size_type#]				- type for the number rows and coluns
    *	<li>[#difference_type#]		- type for the stride between elements (in a row or column)
    *	<li>[#reference#]				- value_type&
    *	<li>[#const_reference#]		- const value_type&
    * \end{description}
    */
  // @{
  // @}
  typedef DenseLinAlgPack::value_type					value_type;
  typedef DenseLinAlgPack::size_type					size_type;
  typedef ptrdiff_t								difference_type;
  typedef value_type&								reference;
  typedef const value_type&						const_reference;

  /* * @name {\bf Constructors}.
    *
    * These constructors are used by the other entities in the library
    * to create DMatrixSlices.  In general user need not use these
    * constructors directly.  Instead, the general user should use the 
    * subscript operators to create subregions of DMatrix and DMatrixSlice
    * objects.
    * 
    * The default copy constructor is used and is therefore not shown here.
    */

  // @{

  /// 
  /* * Construct an empty view.
    *
    * The client can then call bind(...) to bind the view.
    */
  DMatrixSlice();

  /// 
  /* * Construct a veiw of a matrix from a raw C++ array.
    *
    * The DMatrixSlice constructed represents a 2-D matrix whos elements are stored
    * in the array starting at #ptr#.  This is how the BLAS represent general rectangular
    * matrices.
    * The class can be used to provide a non-constant view the elements (#DMatrix#)
    * or a constant view (#const DMatrixSlice#).  Here is an example of how to
    * create a constant view:
    *
    \verbatim
    const DMatrixSlice::size_type m = 4, n = 4;
    const DMatrixSlice::value_type ptr[m*n] = { ... };
    const GenMatrixslice mat(cosnt_cast<DMatrixSlice::value_type*>(ptr),m*n,m,m,n);
    \endverbatim
    *
    * The #const_cast<...># such as in the example above is perfectly safe to use
    * when constructing  #const# veiw of #const# data.  On the other hand casting
    * away #const# and then non-#const# use is not safe in general since the original
    * #const# data may reside in ROM for example.  By using a non-#const# pointer in the
    * constructor you avoid accidentally making a non-#const# view of #const# data.
    *
    * Preconditions: <ul>
    *		<li> #rows <= max_rows# (throw out_of_range)
    *		<li> #start + rows + max_rows * (cols - 1) <= v.size()# (throw out_of_range)
    *		</ul>
    *
    * @param	ptr			pointer to the storage of the elements of the matrix (column oriented).
    * @param	size		total size of the storage pointed to by #ptr# (for size checking)
    * @param	max_rows	number of rows in the full matrix this sub-matrix was taken from.
    *						This is equivalent to the leading dimension argument (LDA) in
    *						the BLAS.
    * @param	rows		number of rows this matrix represents
    *	@param	cols		number of columns this matrix represents
    */
  DMatrixSlice( value_type* ptr, size_type size
    , size_type max_rows, size_type rows, size_type cols );

  /// 
  /* * Construct a submatrix region of another DMatrixSlice.
    *
    * This constructor simplifies the creation of subregions using the subscript
    * operators.
    *
    * I and J must be bounded ranges (full_range() == false).
    *
    * Preconditions: <ul>
    *		<li> #I.full_range() == false# (throw out_of_range)
    *		<li> #J.full_range() == false# (throw out_of_range)
    *		<li> #I.ubound() <= gms.rows()# (throw out_of_range)
    *		<li> #J.ubound() <= gms.cols()# (throw out_of_range)
    *		</ul>
    */
  DMatrixSlice( DMatrixSlice& gms, const Range1D& I
    , const Range1D& J );

  // @}

  /** \brief . */
  /* * Set to the view of the input DMatrixSlice.
    *
    *
    */
  void bind( DMatrixSlice gms );

  /* * @name {\bf Dimensionality, Misc}. */
  // @{

  /// Return the number of rows
  size_type		rows() const;
  /// Return the number of columns
  size_type		cols() const;

  /// 
  /* * Returns the degree of memory overlap of #this# and the DMatrixSlice object #gms#.
    *
    * @return 
    *		\begin{description}
    *		<li>[NO_OVERLAP]	There is no memory overlap between #this# and #gms#.
    *		<li>[SOME_OVERLAP]	There is some memory locations that #this# and #gms# share.
    *		<li>[SAME_MEM]		The DMatrixSlice objects #this# and #gms# share the exact same memory locations.
    *		\end{description}
    */
  EOverLap overlap(const DMatrixSlice& gms) const;

  // @}

  /* * @name {\bf Individual Element Access Subscripting (lvalue)}. */
  // @{

  /// Return element at row i, col j (i,j) (1-based) (throws std::out_of_range if i, j are out of bounds)
  reference		operator()(size_type i, size_type j);
  /// Return element at row i, col j (i,j) (1-based) (throws std::out_of_range if i, j are out of bounds)
  const_reference	operator()(size_type i, size_type j) const;

  // @}

  /* * @name {\bf Subregion Access (1-based)}.
    *
    * These member functions allow access to subregions of the DMatrixSlice object.
    * The functions, row(i), col(j), and diag(k) return DVectorSlice objects while
    * the subscripting operators opeator()(I,J) return DMatrixSlice objects for
    * rectangular subregions.
    */
  // @{

  /// Return DVectorSlice object representing the ith row (1-based; 1,2,..,#this->rows()#, or throw std::out_of_range)
  DVectorSlice			row(size_type i);
  /// Same as above
  const DVectorSlice	row(size_type i) const;
  /// Return DVectorSlice object representing the jth column (1-based; 1,2,..,#this->cols()#, or throw std::out_of_range)
  DVectorSlice			col(size_type j);
  /// Same as above
  const DVectorSlice	col(size_type j) const;
  /// 
  /* * Return DVectorSlice object representing a diagonal.
    *
    * Passing k == 0 returns the center diagonal.  Values of k < 0 are the lower diagonals
    * (k = -1, -2, ..., -#this->rows()# + 1).  Values of k > 0 are the upper diagonals
    * (k = 1, 2, ..., #this->cols()# - 1).
    *
    * Preconditions: <ul>
    *		<li> #[k < 0] k <= this->rows() + 1# (throw out_of_range)
    *		<li> #[k > 0] k <= this->cols() + 1# (throw out_of_range)
    *		</ul>
    */
  DVectorSlice			diag(difference_type k = 0);
  /// Same as above.
  const DVectorSlice	diag(difference_type k = 0) const;
  /// 
  /* * Extract a rectangular subregion containing rows I, and columns J.
    *
    * This operator function returns a DMatrixSlice that represents a
    * rectangular region of this DMatrixSlice.  This submatrix region
    * represents the rows I.lbound() to I.ubound() and columns J.lbound()
    * to J.lbound().  If I or J is unbounded (full_range() == true, constructed
    * with Range1D()), the all of the rows or columns respectively will be
    * selected.  For example. To select all the rows and the first 5 columns of
    * a matrix #A# you would use #A(Range1D(),Range1D(1,5))#.
    *
    * Preconditions: <ul>
    *		<li> #[I.full_range() == false] I.ubound() <= this->rows()# (throw out_of_range)
    *		<li> #[J.full_range() == false] J.ubound() <= this->cols()# (throw out_of_range)
    *		</ul>
    */
  DMatrixSlice operator()(const Range1D& I, const Range1D& J);
  /// Same as above.
  const DMatrixSlice operator()(const Range1D& I, const Range1D& J) const;
  /// 
  /* * Extract a rectangular subregion containing rows i1 to i2, and columns j1 to j2.
    *
    * This operator function returns a DMatrixSlice that represents a
    * rectangular region of this DMatrixSlice.  This submatrix region
    * represents the rows i1 to 12 and colunms j1 to j2.
    * 
    * Preconditions: <ul>
    *		<li> #i1 <= i2# (throw out_of_range)
    *		<li> #i2 <= this->rows()# (throw out_of_range)
    *		<li> #j1 <= j2# (throw out_of_range)
    *		<li> #j2 <= this->cols()# (throw out_of_range)
    *		</ul>
    */
  DMatrixSlice operator()(size_type i1, size_type i2, size_type j1
    , size_type j2);
  /// Same as above.
  const DMatrixSlice operator()(size_type i1, size_type i2, size_type j1
    , size_type j2) const;
  /// Allow the address to be taken of an rvalue of this object.
  DMatrixSlice* operator&() {
    return this;
  }
  /** \brief . */
  const DMatrixSlice* operator&() const {
    return this;
  }
  /// Return reference of this.  Included for iniformity with DMatrix
  DMatrixSlice& operator()();
  /// Same as above
  const DMatrixSlice& operator()() const;

  // @}

  /* * @name {\bf Assignment operators}. */
  // @{

  /** \brief . */
  /* * Sets all elements = alpha
    *
    * If the underlying valarray is unsized (#this->v().size() == 0#) the matrix is sized to 1 x 1
    * and the single element is set to alpha.
    *
    * Postcondtions: <ul>
    *		<li> #this->operator()(i,j) == alpha#, i = 1,2,...,#this->rows()#, j = 1,2,...,#this->cols()#
    *		</ul>
    */
  DMatrixSlice& operator=(value_type alpha);
  /** \brief . */
  /* *  Copies all of the elements of the DMatrixSlice, #rhs#, into the elements of #this#.
    *
    * If the underlying valarray is unsized (#this->v().size() == 0#) the matrix is sized to
    * the size of the rhs matrix.
    *
    * Precondtions: <ul>
    *		<li> #this->rows() == gms_rhs.rows()# (throw length_error)
    *		<li> #this->cols() == gms_rhs.cols()# (throw length_error)
    *		</ul>
    *
    * Postcondtions: <ul>
    *		<li> #this->operator()(i,j) == gms_rhs(i,j)#, i = 1,2,...,#this->rows()#, j = 1,2,...,#this->cols()#
    *		</ul>
    */
  DMatrixSlice& operator=(const DMatrixSlice& gms_rhs);

  // @}

  /* * @name {\bf Raw data access}.
    */
  // @{

  /// Return the number of rows in the full matrix. Equivalent to BLAS LDA argument.
  size_type			max_rows() const;
  /** \brief . */
  /* * Return pointer to the first element in the underlying array the jth
     * col (j is 1-based here [1,cols]).  If unsized col_ptr(1) returns zero if unsized.
     */
  value_type*			col_ptr(size_type j);
  /// Same as above.
  const value_type*	col_ptr(size_type j) const;

  // @}

private:
  value_type		*ptr_;		// contains the data for the matrix region
  size_type		max_rows_,	// the number of rows in the full matrix
          rows_,		// the number of rows in this matrix region
          cols_;		// the number of cols in this matrix region

  // Assert the row subscript is in bounds (1-based), (throw std::out_of_range)
  void validate_row_subscript(size_type i) const;
  // Assert the column subscript is in bounds (1-based), (throw std::out_of_range)
  void validate_col_subscript(size_type j) const;
  // Assert that a constructed DMatrixSlice has a valid range, (throw std::out_of_range)
  void validate_setup(size_type size) const;
  
  // Get a diagonal
  DVectorSlice p_diag(difference_type k) const;

};	// end class DMatrixSlice

/** \brief . */
/* * 2-D General Rectangular Matrix (column major) Storage Class.
  *
  * This class provides the storage for 2-D rectangular matrices.
  */
class DMatrix {
public:
  /* * @name {\bf Nested Member Types (STL)}.
    *
    * These nested types give the types used in the interface to the class.
    *
    * \begin{description}
    *	<li>[#value_type#]				type being stored in the underlying valarray<>			
    *	<li>[#size_type#]				type for the number rows and coluns
    *	<li>[#difference_type#]		type for the stride between elements (in a row or column)
    *	<li>[#reference#]				value_type&
    *	<li>[#const_reference#]		const value_type&
    * \end{description}
    */
  // @{
  // @}
  
  typedef DenseLinAlgPack::value_type					value_type;
  typedef DenseLinAlgPack::size_type					size_type;
  typedef ptrdiff_t								difference_type;
  typedef value_type&								reference;
  typedef const value_type&						const_reference;
  typedef std::valarray<value_type>				valarray;

  /* * @name {\bf Constructors}.
    *
    * The general user uses these constructors to create a matrix.  
    *
    * The default constructor is used and is therefore not shown here.
    */
  // @{

  /// Construct a matrix with rows = cols = 0
  DMatrix();
  /// Construct an uninitialied rectangular matrix (rows x cols) 
  explicit DMatrix(size_type rows, size_type cols);
  /** \brief . */
  /* * Construct rectangular matrix (rows x cols) with elements initialized to val.
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i,j) == val#, i = 1,2,...,#rows#, j = 1,2,...,#cols#  
    *		</ul>
    */
  explicit DMatrix(value_type val, size_type rows, size_type cols);
  /// 
  /* * Construct rectangular matrix (rows x cols) initialized to elements of p (by column).
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i,j) == p[i-1 + rows * (j - 1)]#, i = 1,2,...,#rows#, j = 1,2,...,#cols#  
    *		</ul>
    */
  explicit DMatrix(const value_type* p, size_type rows, size_type cols);
  /** \brief . */
  /* * Construct a matrix from the elements in another DMatrixSlice, #gms#.
    *
    * Postconditions: <ul>
    *		<li> #this->operator()(i,j) == gms(i,j)#, i = 1,2,...,#rows#, j = 1,2,...,#cols#  
    *		</ul>
    */
  DMatrix(const DMatrixSlice& gms);

  // @}

  /* * @name {\bf Memory Management, Dimensionality, Misc}. */
  // @{
  
  /// Resize matrix to a (rows x cols) matrix and initializes any added elements by val
  void resize(size_type rows, size_type cols, value_type val = value_type());

  /// frees memory and leaves a (0 x 0) matrix
  void free();
  
  /// Return the number of rows
  size_type		rows() const;

  /// Return the number of columns
  size_type		cols() const;

  /// 
  /* * Returns the degree of memory overlap of #this# and the DMatrixSlice object #gms#.
    *
    * @return 
    *		\begin{description}
    *		<li>[NO_OVERLAP]	There is no memory overlap between #this# and #gms#.
    *		<li>[SOME_OVERLAP]	There is some memory locations that #this# and #gms# share.
    *		<li>[SAME_MEM]		The DMatrixSlice objects #this# and #gms# share the exact same memory locations.
    *		\end{description}
    */
  EOverLap overlap(const DMatrixSlice& gms) const;

  // @}

  /* * @name {\bf Individual Element Access Subscripting (lvalue)}. */
  // @{

  /// Return element at row i, col j (i,j) (1-based)
  reference		operator()(size_type i, size_type j);

  /// Return element at row i, col j (i,j) (1-based)
  const_reference	operator()(size_type i, size_type j) const;

  // @}

  /* * @name {\bf Subregion Access (1-based)}.
    *
    * These member functions allow access to subregions of the DMatrix object.
    * The functions, row(i), col(j), and diag(k) return DVectorSlice objects while
    * the subscripting operators opeator()(I,J) return DMatrixSlice objects for
    * rectangular subregions.
    */
  // @{

  /// Return DVectorSlice object representing the ith row (1-based; 1,2,..,#this->rows()#)
  DVectorSlice			row(size_type i);

  /** \brief . */
  const DVectorSlice	row(size_type i) const;

  /// Return DVectorSlice object representing the jth column (1-based; 1,2,..,#this->cols()#)
  DVectorSlice			col(size_type j);

  /** \brief . */
  const DVectorSlice	col(size_type j) const;

  /// 
  /* * Return DVectorSlice object representing a diagonal.
    *
    * Passing k == 0 returns the center diagonal.  Values of k < 0 are the lower diagonals
    * (k = -1, -2, ..., #this->rows()# - 1).  Values of k > 0 are the upper diagonals
    * (k = 1, 2, ..., #this->cols()# - 1).
    *
    * Preconditions: <ul>
    *		<li> #[k < 0] k <= this->rows() + 1# (throw out_of_range)
    *		<li> #[k > 0] k <= this->cols() + 1# (throw out_of_range)
    *		</ul>
    */
  DVectorSlice			diag(difference_type k = 0);

  /** \brief . */
  const DVectorSlice	diag(difference_type k = 0) const;

  /// 
  /* * Extract a rectangular subregion containing rows I, and columns J.
    *
    * This operator function returns a DMatrixSlice that represents a
    * rectangular region of this DMatrixSlice.  This submatrix region
    * represents the rows I.lbound() to I.ubound() and columns J.lbound()
    * to J.lbound().  If I or J is unbounded (full_range() == true, constructed
    * with Range1D()), the all of the rows or columns respectively will be
    * selected.  For example. To select all the rows and the first 5 columns of
    * a matrix #A# you would use #A(Range1D(),Range1D(1,5))#.
    *
    * Preconditions: <ul>
    *		<li> #[I.full_range() == false] I.ubound() <= this->rows()# (throw out_of_range)
    *		<li> #[J.full_range() == false] J.ubound() <= this->cols()# (throw out_of_range)
    *		</ul>
    */
  DMatrixSlice operator()(const Range1D& I, const Range1D& J);

  /** \brief . */
  const DMatrixSlice operator()(const Range1D& I, const Range1D& J) const;

  /// 
  /* * Extract a rectangular subregion containing rows i1 to i2, and columns j1 to j2.
    *
    * This operator function returns a DMatrixSlice that represents a
    * rectangular region of this DMatrixSlice.  This submatrix region
    * represents the rows i1 to 12 and colunms j1 to j2.
    * 
    * Preconditions: <ul>
    *		<li> #i1 <= i2# (throw out_of_range)
    *		<li> #i2 <= this->rows()# (throw out_of_range)
    *		<li> #j1 <= j2# (throw out_of_range)
    *		<li> #j2 <= this->cols()# (throw out_of_range)
    *		</ul>
    */
  DMatrixSlice operator()(size_type i1, size_type i2, size_type j1
    , size_type j2);

  /** \brief . */
  const DMatrixSlice operator()(size_type i1, size_type i2, size_type j1
    , size_type j2) const;

  /// Return a DMatrixSlice that represents this entire matrix.
  DMatrixSlice operator()();

  /** \brief . */
  const DMatrixSlice operator()() const;

  // @}

  /* * @name {\bf Implicit conversion operators}.
    *
    * These functions allow for the implicit converstion from a DMatrix to a DMatrixSlice.
    * This implicit converstion is important for the proper usage of much of the
    * libraries functionality.
    */
  // @{

  /** \brief . */
  operator DMatrixSlice();
  /** \brief . */
  operator const DMatrixSlice() const;

  // @}

  /* * @name {\bf Assignment Operators}. */
  // @{
  
  /** \brief . */
  /* * Sets all elements = alpha
    *
    * If the underlying valarray is unsized (#this->v().size() == 0#) the matrix is sized to 1 x 1
    * and the single element is set to alpha.
    *
    * Postcondtions: <ul>
    *		<li> #this->operator()(i,j) == alpha#, i = 1,2,...,#this->rows()#, j = 1,2,...,#this->cols()#
    */
  DMatrix& operator=(value_type rhs);
  /** \brief . */
  /* * Copies all of the elements of the DMatrixSlice, #rhs#, into the elements of #this#.
    *
    * If #this# is not the same size as gms_rhs the #this# is resized.
    *
    * Postcondtions: <ul>
    *		<li> #this->operator()(i,j) == gms_rhs(i,j)#, i = 1,2,...,#this->rows()#, j = 1,2,...,#this->cols()#
    */
  DMatrix& operator=(const DMatrixSlice& gms_rhs);
  /// Same as above.  Needed to override the default assignment operator.
  DMatrix& operator=(const DMatrix& rhs);

  // @}

  /* * @name {\bf Raw data access}.
    */
  // @{

  /// Return the number of rows in the full matrix. Equivalent to BLAS LDA argument.
  size_type			max_rows() const;
  /** \brief . */
  /* * Return pointer to the first element in the underlying array the jth
     * col (j is 1-based here [1,cols]).  If unsized col_ptr(1) returns zero if unsized.
     */
  value_type*			col_ptr(size_type j);
  /// Same as above.
  const value_type*	col_ptr(size_type j) const;

  // @}

private:
  std::valarray<value_type>	v_;
  size_type					rows_;

  // Assert the row subscript is in bounds (1-based), (throw std::out_of_range)
  void validate_row_subscript(size_type i) const;
  // Assert the column subscript is in bounds (1-based), (throw std::out_of_range)
  void validate_col_subscript(size_type j) const;

  // Get a diagonal, (throw std::out_of_range)
  DVectorSlice p_diag(difference_type k) const;

};	// end class DMatrix

//		end General Matix Classes scope
// @}

// ///////////////////////////////////////////////////////////////////////////////
// Non-member function declarations												//
// ///////////////////////////////////////////////////////////////////////////////

/* * @name {\bf DMatrix / DMatrixSlice Associated Non-Member Functions}. */
// @{
//		begin non-member functions scope

inline 
///  
/* * Explicit conversion function from DMatrix to DMatrixSlice.
  *
  * This is needed to allow a defered evaluation class (TCOL) to be evaluated using its
  * implicit conversion operator temp_type() (which returns DMatrix for DMatrixSlice
  * resulting expressions).
  */
//DMatrixSlice EvaluateToDMatrixSlice(const DMatrix& gm)
//{	return DMatrixSlice(gm); }

/// Assert two matrices are the same size and throws length_error if they are not (LINALGPACK_CHECK_RHS_SIZES).
void assert_gms_sizes(const DMatrixSlice& gms1, BLAS_Cpp::Transp trans1, const DMatrixSlice& gms2
  , BLAS_Cpp::Transp trans2);

inline 
/// Assert a matrix is square and throws length_error if it is not (LINALGPACK_CHECK_SLICE_SETUP).
void assert_gms_square(const DMatrixSlice& gms) {
#ifdef LINALGPACK_CHECK_SLICE_SETUP
  if(gms.rows() != gms.cols())
    throw std::length_error("Matrix must be square");
#endif
} 

inline 
/** \brief . */
/* * Utility to check if a lhs matrix slice is the same size as a rhs matrix slice.
  *
  * A DMatrixSlice can not be resized since the rows_ property of the
  * DMatrix it came from will not be updated.  Allowing a DMatrixSlice
  * to resize from unsized would require that the DMatrixSlice carry
  * a reference to the DMatrix it was created from.  If this is needed
  * then it will be added.
  */
void assert_gms_lhs(const DMatrixSlice& gms_lhs, size_type rows, size_type cols
  , BLAS_Cpp::Transp trans_rhs = BLAS_Cpp::no_trans)
{
  if(trans_rhs == BLAS_Cpp::trans) std::swap(rows,cols);
  if(gms_lhs.rows() == rows && gms_lhs.cols() == cols) return; // same size
  // not the same size so is an error
  throw std::length_error("assert_gms_lhs(...):  lhs DMatrixSlice dim does not match rhs dim");
}

/* * @name Return rows or columns from a possiblly transposed DMatrix or DMatrixSlice. */
// @{

inline 
/** \brief . */
DVectorSlice row(DMatrixSlice& gms, BLAS_Cpp::Transp trans, size_type i) {
  return (trans ==  BLAS_Cpp::no_trans) ? gms.row(i) : gms.col(i);
} 

inline 
/** \brief . */
DVectorSlice col(DMatrixSlice& gms, BLAS_Cpp::Transp trans, size_type j) {
  return (trans ==  BLAS_Cpp::no_trans) ? gms.col(j) : gms.row(j);
} 

inline 
/** \brief . */
const DVectorSlice row(const DMatrixSlice& gms, BLAS_Cpp::Transp trans, size_type i) {
  return (trans ==  BLAS_Cpp::no_trans) ? gms.row(i) : gms.col(i);
} 

inline 
/** \brief . */
const DVectorSlice col(const DMatrixSlice& gms, BLAS_Cpp::Transp trans, size_type j) {
  return (trans ==  BLAS_Cpp::no_trans) ? gms.col(j) : gms.row(j);
} 

inline 
/** \brief . */
DVectorSlice row(DMatrix& gm, BLAS_Cpp::Transp trans, size_type i) {
  return (trans ==  BLAS_Cpp::no_trans) ? gm.row(i) : gm.col(i);
} 

inline 
/** \brief . */
DVectorSlice col(DMatrix& gm, BLAS_Cpp::Transp trans, size_type j) {
  return (trans ==  BLAS_Cpp::no_trans) ? gm.col(j) : gm.row(j);
} 

inline 
/** \brief . */
const DVectorSlice row(const DMatrix& gm, BLAS_Cpp::Transp trans, size_type i) {
  return (trans ==  BLAS_Cpp::no_trans) ? gm.row(i) : gm.col(i);
} 

inline 
/** \brief . */
const DVectorSlice col(const DMatrix& gm, BLAS_Cpp::Transp trans, size_type j) {
  return (trans ==  BLAS_Cpp::no_trans) ? gm.col(j) : gm.row(j);
} 

// @}

inline 
/// Utility to resize a DMatrix to the size of a rhs matrix.
void resize_gm_lhs(DMatrix* gm_rhs, size_type rows, size_type cols
  , BLAS_Cpp::Transp trans_rhs)
{
  if(trans_rhs == BLAS_Cpp::trans) std::swap(rows,cols);
  gm_rhs->resize(rows,cols);
}

//		end non-member functions scope
// @}

//		end General Rectangular 2-D Matrices scope
// @}

// ////////////////////////////////////////////////////////////////////////////////
// Inline definitions of computationally independent member function definitions //
// ////////////////////////////////////////////////////////////////////////////////

// /////////////////////////////////////////////////////////////////////////////
// DMatrixSlice inline member function definitions

// Private utilities

#ifndef LINALGPACK_CHECK_RANGE
inline
void DMatrixSlice::validate_row_subscript(size_type i) const
{}
#endif

#ifndef LINALGPACK_CHECK_RANGE
inline
void DMatrixSlice::validate_col_subscript(size_type j) const
{}
#endif

#ifndef LINALGPACK_CHECK_SLICE_SETUP
inline
void DMatrixSlice::validate_setup(size_type size) const
{}
#endif

// Constructors

inline
DMatrixSlice::DMatrixSlice()
  : ptr_(0), max_rows_(0), rows_(0), cols_(0)
{}

inline
DMatrixSlice::DMatrixSlice( value_type* ptr, size_type size
    , size_type max_rows, size_type rows, size_type cols )
  : ptr_(ptr), max_rows_(max_rows), rows_(rows), cols_(cols)
{	
  validate_setup(size);
}

inline
DMatrixSlice::DMatrixSlice( DMatrixSlice& gms, const Range1D& I
    , const Range1D& J)
  : ptr_( gms.col_ptr(1) + (I.lbound() - 1) + (J.lbound() - 1) * gms.max_rows() )
  , max_rows_(gms.max_rows())
  , rows_(I.size())
  , cols_(J.size())
{	
  gms.validate_row_subscript(I.ubound());
  gms.validate_col_subscript(J.ubound());
}

inline
void DMatrixSlice::bind(DMatrixSlice gms) {
  ptr_		= gms.ptr_;
  max_rows_	= gms.max_rows_;
  rows_		= gms.rows_;
  cols_		= gms.cols_;
}

// Size / Dimensionality

inline
DMatrixSlice::size_type DMatrixSlice::rows() const {
  return rows_;
}

inline
DMatrixSlice::size_type DMatrixSlice::cols() const {
  return cols_;
}

// Misc

// Element access

inline
DMatrixSlice::reference DMatrixSlice::operator()(size_type i, size_type j)
{	
  validate_row_subscript(i);
  validate_col_subscript(j);
  return ptr_[(i-1) + (j-1) * max_rows_];
}

inline
DMatrixSlice::const_reference	DMatrixSlice::operator()(size_type i, size_type j) const
{
  validate_row_subscript(i);
  validate_col_subscript(j);
  return ptr_[(i-1) + (j-1) * max_rows_];
}

// Subregion access (validated by constructor for DMatrixSlice)

inline
DVectorSlice  DMatrixSlice::row(size_type i) {
  validate_row_subscript(i);
  return DVectorSlice( ptr_ + (i-1), cols(), max_rows() );
} 

inline
const DVectorSlice DMatrixSlice::row(size_type i) const {
  validate_row_subscript(i);
  return DVectorSlice( const_cast<value_type*>(ptr_) + (i-1), cols(), max_rows() );
} 

inline
DVectorSlice	DMatrixSlice::col(size_type j) {
  validate_col_subscript(j);
  return DVectorSlice( ptr_ + (j-1)*max_rows(), rows(), 1 );
} 

inline
const DVectorSlice DMatrixSlice::col(size_type j) const {
  validate_col_subscript(j);
  return DVectorSlice( const_cast<value_type*>(ptr_) + (j-1)*max_rows(), rows(), 1 );
} 

inline
DVectorSlice DMatrixSlice::diag(difference_type k) {
  return p_diag(k);
}

inline
const DVectorSlice DMatrixSlice::diag(difference_type k) const {
  return p_diag(k);
}

inline
DMatrixSlice DMatrixSlice::operator()(const Range1D& I, const Range1D& J) {
  return DMatrixSlice(*this, RangePack::full_range(I, 1, rows()), RangePack::full_range(J,1,cols()));
}

inline
const DMatrixSlice DMatrixSlice::operator()(const Range1D& I, const Range1D& J) const {
  return DMatrixSlice( const_cast<DMatrixSlice&>(*this)
    , RangePack::full_range(I, 1, rows()), RangePack::full_range(J,1,cols()) );
}

inline
DMatrixSlice DMatrixSlice::operator()(size_type i1, size_type i2, size_type j1
  , size_type j2)
{
  return DMatrixSlice(*this, Range1D(i1,i2), Range1D(j1,j2));
}

inline
const DMatrixSlice DMatrixSlice::operator()(size_type i1, size_type i2, size_type j1
  , size_type j2) const
{
  return DMatrixSlice( const_cast<DMatrixSlice&>(*this), Range1D(i1,i2)
    , Range1D(j1,j2) );
}

inline
DMatrixSlice& DMatrixSlice::operator()() {
  return *this;
}

inline
const DMatrixSlice& DMatrixSlice::operator()() const {
  return *this;
}

// Assignment operators

inline
DMatrixSlice& DMatrixSlice::operator=(value_type alpha) {
  assign(this, alpha);
  return *this;
}

inline
DMatrixSlice& DMatrixSlice::operator=(const DMatrixSlice& rhs) {
  assign(this, rhs, BLAS_Cpp::no_trans);
  return *this;
}

// Raw data access

inline
DMatrixSlice::size_type DMatrixSlice::max_rows() const
{	return max_rows_; }

inline
DMatrixSlice::value_type* DMatrixSlice::col_ptr(size_type j) {
  if( ptr_ )
    validate_col_subscript(j);
  return ptr_ + (j-1) * max_rows();	// will be 0 if not bound to a view.
}

inline
const DMatrixSlice::value_type* DMatrixSlice::col_ptr(size_type j) const {
  if( ptr_ )
    validate_col_subscript(j);
  return ptr_ + (j-1) * max_rows();	// will be 0 if not bound to a view.
}

// ////////////////////////////////////////////////////////////////////////////////////////
// DMatrix inline member function definitions

// Private utilities

#ifndef LINALGPACK_CHECK_RANGE
inline
void DMatrix::validate_row_subscript(size_type i) const
{}
#endif

#ifndef LINALGPACK_CHECK_RANGE
inline
void DMatrix::validate_col_subscript(size_type j) const
{}
#endif

// constructors

inline
DMatrix::DMatrix() : v_(), rows_(0)
{}

inline
DMatrix::DMatrix(size_type rows, size_type cols)
  : v_(rows*cols), rows_(rows)
{}

inline
DMatrix::DMatrix(value_type val, size_type rows, size_type cols)
  : v_(val,rows*cols), rows_(rows)
{}

inline
DMatrix::DMatrix(const value_type* p, size_type rows, size_type cols)
  : v_(rows*cols), rows_(rows)
{
// 6/7/00: valarray<> in libstdc++-2.90.7 has a bug in v_(p,size) so we do not
// use it.  This is a hack until I can find the time to remove valarray all
// together.
  std::copy( p, p + rows*cols, &v_[0] );
}

inline
DMatrix::DMatrix(const DMatrixSlice& gms)
  : v_(gms.rows() * gms.cols()), rows_(gms.rows())
{	
  assign(this, gms, BLAS_Cpp::no_trans);
}

// Memory management

inline
void DMatrix::resize(size_type rows, size_type cols, value_type val)
{
  v_.resize(rows*cols,val);
  v_ = val;
  rows_ = rows;
}

inline
void DMatrix::free() {
  v_.resize(0);
  rows_ = 0;
}

// Size / Dimensionality

inline
DMatrix::size_type DMatrix::rows() const {
  return rows_;
}

inline
DMatrix::size_type DMatrix::cols() const {
  return rows_ > 0 ? v_.size() / rows_ : 0;
}

// Element access

inline
DMatrix::reference DMatrix::operator()(size_type i, size_type j)
{	 
  validate_row_subscript(i); validate_col_subscript(j);
  return v_[(i-1) + (j-1) * rows_];
}

inline
DMatrix::const_reference DMatrix::operator()(size_type i, size_type j) const
{
  validate_row_subscript(i); validate_col_subscript(j);
  return (const_cast<std::valarray<value_type>&>(v_))[(i-1) + (j-1) * rows_];
}

// subregion access (range checked by constructors)

inline
DVectorSlice DMatrix::row(size_type i)
{
  validate_row_subscript(i);
  return DVectorSlice( col_ptr(1) + (i-1), cols(), rows() );
} 

inline
const DVectorSlice DMatrix::row(size_type i) const
{
  validate_row_subscript(i);
  return DVectorSlice( const_cast<value_type*>(col_ptr(1)) + (i-1), cols(), rows() );
} 

inline
DVectorSlice	DMatrix::col(size_type j)
{
  validate_col_subscript(j);
  return DVectorSlice( col_ptr(1) + (j-1) * rows(), rows(), 1 );
} 

inline
const DVectorSlice DMatrix::col(size_type j) const
{
  validate_col_subscript(j);
  return DVectorSlice( const_cast<value_type*>(col_ptr(1)) + (j-1) * rows(), rows(), 1 ) ;
} 

inline
DVectorSlice DMatrix::diag(difference_type k)
{
  return p_diag(k);
}	

inline
const DVectorSlice DMatrix::diag(difference_type k) const
{
  return p_diag(k);
}	

inline
DMatrixSlice DMatrix::operator()(const Range1D& I, const Range1D& J)
{
  Range1D Ix = RangePack::full_range(I,1,rows()), Jx = RangePack::full_range(J,1,cols());
  return DMatrixSlice( col_ptr(1) + (Ix.lbound() - 1) + (Jx.lbound() - 1) * rows()
    , max_rows() * cols(), max_rows(), Ix.size(), Jx.size() );
}

inline
const DMatrixSlice DMatrix::operator()(const Range1D& I, const Range1D& J) const
{
  Range1D Ix = RangePack::full_range(I,1,rows()), Jx = RangePack::full_range(J,1,cols());
  return DMatrixSlice( const_cast<value_type*>(col_ptr(1)) + (Ix.lbound() - 1) + (Jx.lbound() - 1) * rows()
    , max_rows() * cols(), max_rows(), Ix.size(), Jx.size() );
}

inline
DMatrixSlice DMatrix::operator()(size_type i1, size_type i2, size_type j1
  , size_type j2)
{
  return DMatrixSlice( col_ptr(1) + (i1 - 1) + (j1 - 1) * rows()
    , max_rows() * cols(), max_rows(), i2 - i1 + 1, j2 - j1 + 1 );
}

inline
const DMatrixSlice DMatrix::operator()(size_type i1, size_type i2, size_type j1
  , size_type j2) const
{
  return DMatrixSlice( const_cast<value_type*>(col_ptr(1)) + (i1 - 1) + (j1 - 1) * rows()
    , max_rows() * cols(), max_rows(), i2 - i1 + 1, j2 - j1 + 1 );
}

inline
DMatrixSlice DMatrix::operator()()
{
  return DMatrixSlice( col_ptr(1), max_rows() * cols(), max_rows(), rows(), cols() );
}

inline
const DMatrixSlice DMatrix::operator()() const
{
  return DMatrixSlice( const_cast<value_type*>(col_ptr(1)), max_rows() * cols(), max_rows()
    , rows(), cols() );
}

// Implicit conversion operators

inline
DMatrix::operator DMatrixSlice() {
  return (*this)();
}

inline
DMatrix::operator const DMatrixSlice() const
{
  return (*this)();
}

// Assignment operators

inline
DMatrix& DMatrix::operator=(value_type alpha)
{
  assign(this, alpha);
  return *this;
}

inline
DMatrix& DMatrix::operator=(const DMatrix& rhs)
{
  assign(this, rhs, BLAS_Cpp::no_trans);
  return *this;
}

inline
DMatrix& DMatrix::operator=(const DMatrixSlice& rhs)
{
  assign(this, rhs, BLAS_Cpp::no_trans);
  return *this;
}

// Raw data access

inline
DMatrix::size_type DMatrix::max_rows() const
{	return rows_; }

inline
DMatrix::value_type* DMatrix::col_ptr(size_type j)
{
  if( v_.size() ) {
    validate_col_subscript(j);
    return &v_[ (j-1) * max_rows() ];
  }
  else {
    return 0;
  }
}

inline
const DMatrix::value_type* DMatrix::col_ptr(size_type j) const 
{
  if( v_.size() ) {
    validate_col_subscript(j);
    return &const_cast<valarray&>(v_)[ (j-1) * max_rows() ];
  }
  else {
    return 0;
  }
}

}	// end namespace DenseLinAlgPack

#endif	// GEN_MATRIX_CLASS_H