This file is indexed.

/usr/include/trilinos/ConstrainedOptPack_QPSolverRelaxedQPSchur.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef QP_SOLVER_RELAXED_QP_SCHUR_H
#define QP_SOLVER_RELAXED_QP_SCHUR_H

#include "ConstrainedOptPack_QPSolverRelaxed.hpp"
#include "ConstrainedOptPack_QPSchur.hpp"
#include "ConstrainedOptPack_QPInitFixedFreeStd.hpp"
#include "ConstrainedOptPack_MatrixSymHessianRelaxNonSing.hpp"
#include "ConstrainedOptPack_ConstraintsRelaxedStd.hpp"
#include "ConstrainedOptPack_MatrixSymAddDelBunchKaufman.hpp"
#include "AbstractLinAlgPack_VectorMutableDense.hpp"
#include "Teuchos_StandardCompositionMacros.hpp"
#include "Teuchos_StandardMemberCompositionMacros.hpp"

namespace ConstrainedOptPack {

/** \brief Solves Quadratic Programming (QP) problems using QPSchur.
 *
 * This is the only subclass needed for QPSchur.  All of the specifics of how the
 * initial KKT system is formed is delegated to a strategy object of type
 * \c InitKKTSystem (see below).
 */
class QPSolverRelaxedQPSchur : public QPSolverRelaxed {
public:

  /** \brief Interface for the object that forms the initial KKT system {abstract}.
   *
   * Note that this interface is set up such that the relaxation variable
   * must always be initially fixed (and rightly so to avoid illconditioning).
   */
  class InitKKTSystem {
  public:
    /** \brief . */
    typedef std::vector<size_type> i_x_free_t;
    /** \brief . */
    typedef std::vector<size_type> i_x_fixed_t;
    /** \brief . */
    typedef std::vector<EBounds>   bnd_fixed_t;
    /** \brief . */
    typedef std::vector<size_type> j_f_decomp_t;
    /** \brief . */
    typedef Teuchos::RCP<const MatrixSymOpNonsing>
      Ko_ptr_t;
    /** \brief . */
    virtual ~InitKKTSystem() {}
    /** \brief Initializes the KKT system.
     *
     * Let the following permutation matrices define the selection of the
     * initial KKT system:
     *
     * <tt>Q = [ Q_R, Q_X ]</tt> : Initially fixed <tt>Q_R</tt> and free <tt>Q_X</tt> variables
     *
     * <tt>P = [ P_d, P_u ]</tt> : Decomposed <tt>P_d</tt> and undecomposed <tt>P_u</tt> constraints
     *
     * Given the definitions of <tt>Q</tt> and <tt>P</tt> above, this function will return
     * the initial KKT system:
     \verbatim

     Ko = [ Q_R'*G*Q_R         Q_R'*op(F')*P_d ]
          [ P_d'*op(F)*Q_R     0               ]

     fo = [ -Q_R'*g - Q_R'*G*Q_X*b_X    ]
          [ -P_d'f - P_d'*op(F)*Q_X*b_X ]

     b_X = ??? (see below)
     \endverbatim
     *
     * @param  g    [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  G    [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  dL   [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  dU   [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  F    [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  trans_f
     *              [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  f    [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  d    [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  nu   [in] See <tt>QPSolverRelaxed::solve_qp()</tt>
     * @param  n_R  [out] Number of initially free variables.
     * @param  i_x_free
     *              [out] array (size <tt>n_R</tt> or <tt>0</tt>):
     *              If <tt>i_x_free.size() > 0</tt> then <tt>i_x_free[l-1], l = 1...n_R</tt>
     *              defines the matrix <tt>Q_R</tt> as:<br>
     *              <tt>Q_R(:,l) = e(i_x_free[l-1]), l = 1...n_R</tt><br>
     *              If <tt>i_x_free.size() == 0</tt> then <tt>i_x_free</tt> is implicitly
     *              identity and <tt>Q_R</tt> is defiend as:<br>
     *              <tt>Q_R(:,l) = e(l), l = 1...n_R</tt><br>
     *              The ordering of these indices is significant.
     * @param  i_x_fixed
     *              [out] array (size <tt>n_X</tt>):
     *              <tt>i_x_fixed[l-1], l = 1...n_X</tt> defines the matrix <tt>Q_X</tt> as:<br>
     *              <tt>Q_X(:,l) = e(i_x_fixed[l-1]), l = 1...n_X</tt><br>
     *              The ordering of these indices is significant.
     * @param  bnd_fixed
     *             [out] array (size <tt>n_X</tt>):
     *             <tt>bnd_fixed[l-1], l = 1...n_X</tt> defines the initial active set as:<br>
     *\verbatim
                           / LOWER : b_X(l) = dL(i_x_fixed[l-1])
     bnd_fixed[l-1] = |  UPPER : b_X(l) = dU(i_x_fixed[l-1])
                       \ EQUALITY : b_X(l) = dL(i) = dU(i) (i = i_x_fixed[l-1])
     \endverbatim
     * @param  j_f_decomp
     *             [out] array (size <tt>m</tt>):
     *             <tt>j_f_decomp[p-1], p = 1...m</tt> defines the decomposed equalities included
     *             in <tt>Ko</tt> as:<br>
     *             <tt>P_d(:,p) = e(j_f_decomp[p-1]), p = 1...m</tt><br>
     *             The ordering of these indices is significant and are not necessarily
     *             sorted in assending or decending order.
     * @param  b_X [out] vector (size <tt>n_X</tt>):
     *             Initial varaible bounds (see <tt>bnd_fixed</tt> above).  Note that
     *             the relaxation variable is always one of the initially fixed
     *             variables.
     * @param  Ko  [in/out] Initial KKT matrix (size <tt>(n_R+m) x (n_R+m)</tt>).
     *             On output, Ko will contain a possibly dynamically allocated nonsingular
     *             matrix object that represents Ko.  In input, if <tt>Ko->get() != NULL</tt>,
     *             and no other objects have a reference to this object (based on
     *             <tt>Ko->count()</tt>, and it is of the  proper type, then this matrix may be reused.
     * @param  fo  [out] vector (size <tt>n_R + m</tt>) of the rhs for the initial KKT system.
     */
    virtual void initialize_kkt_system(
      const Vector    &g
      ,const MatrixOp   &G
      ,value_type           etaL
      ,const Vector   *dL
      ,const Vector   *dU
      ,const MatrixOp   *F
      ,BLAS_Cpp::Transp     trans_F
      ,const Vector   *f
      ,const Vector   *d
      ,const Vector   *nu
      ,size_type            *n_R
      ,i_x_free_t           *i_x_free
      ,i_x_fixed_t          *i_x_fixed
      ,bnd_fixed_t          *bnd_fixed
      ,j_f_decomp_t         *j_f_decomp
      ,DVector               *b_X
      ,Ko_ptr_t             *Ko
      ,DVector               *fo
      ) const = 0;

  }; // end class InitKKTSystem

  /** \brief Interface for the object that can reform an initial KKT system
   * dynamically {abstract}.
   *
   * This interface allows the definition of the initial KKT system to
   * be changed on the fly.  This may not be possible for may different
   * QPs so this is an optional interface.  Allowing a redefinition of the
   * initial KKT system may allow QPs with more degrees of freedom and lots
   * of changes to the initial active set to be efficiently solved.
   */
  class ReinitKKTSystem : public InitKKTSystem {
  public:
    // ToDo: Create method reinitailze_kkt_system(...)
  }; // end class ReinitKKTSystem

  /** \brief Strategy object that sets up the initial KKT system.
   */
  STANDARD_COMPOSITION_MEMBERS( InitKKTSystem, init_kkt_sys );

  /** \brief Constraints object.
   */
  STANDARD_COMPOSITION_MEMBERS( QPSchurPack::ConstraintsRelaxedStd, constraints );

  /** \brief Set the maximum number of QP iterations as <tt>max_itr = max_qp_iter_frac * n</tt>.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, max_qp_iter_frac );

  /** \brief Set the maximum real run-time in minutes.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, max_real_runtime );

  /** \brief Policy used to select a violated constraint.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS(
    QPSchurPack::ConstraintsRelaxedStd::EInequalityPickPolicy
    ,inequality_pick_policy
    );

  /// Output level
  enum ELocalOutputLevel {
     USE_INPUT_ARG				= -1	// Use the value input to solve_qp(...)
    ,NO_OUTPUT					= 0		//
    ,OUTPUT_BASIC_INFO			= 1		// values sent to QPSchur::solve_qp(...)
    ,OUTPUT_ITER_SUMMARY		= 2		// ...
    ,OUTPUT_ITER_STEPS			= 3
    ,OUTPUT_ACT_SET				= 4
    ,OUTPUT_ITER_QUANTITIES		= 5
  };

  /** \brief Set the output level for QPSchur.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( ELocalOutputLevel, print_level );

  /** \brief Set the feasibility tolerance for the bound constriants.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, bounds_tol );

  /** \brief Set the feasibility tolerance for the general inequality constraints.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, inequality_tol );

  /** \brief Set the feasibility tolerance for the general equality constriants.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, equality_tol );

  /** \brief Set a looser feasibility tolerance ( > feas_tol )
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, loose_feas_tol );

  /** \brief Set the tolerence where a scaled Langrange multiplier is considered
   * degenerate.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, dual_infeas_tol );

  /** \brief Set the tolerence for the size of the step in the primal space that is considered
   * to be a near infinite step.  This is used to determine if the KKT
   * system is near singular.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, huge_primal_step );

  /** \brief Set the tolerence for the size of the step in the dual space that is considered
   * to be a near infinite step.  This is used to determine if the constriants
   * are infeasible.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, huge_dual_step );

  /** \brief <<std member comp>> members for the Big M parameter used in the objective.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, bigM );

  /** \brief <<std member comp>> members for the warning tolerance for tests.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, warning_tol );

  /** \brief <<std member comp>> members for the error tolerance for tests.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, error_tol );

  /** \brief Set the minimum number of refinement iterations to perform
   * when using iterative refinement.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( size_type, iter_refine_min_iter );
    
  /** \brief Set the maximum number of refinement iterations to perform
   * when using iterative refinement.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( size_type, iter_refine_max_iter );

  /** \brief Set the maxinum scaled tolerance the residual of the optimality conditions
   * must be before terminating iterative refinement.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, iter_refine_opt_tol );

  /** \brief Set the maxinum scaled tolerance the residual of the feasibility conditions
   * must be before terminating iterative refinement.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, iter_refine_feas_tol );

  /** \brief Set whether iterative refinement is automatically used once the solution
   * is found.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( bool, iter_refine_at_solution );

  /** \brief Set the relative tolerance for pivots in the schur complement under
   * which a waning will be printed (see MatrixSymAddDelUpdateable) for
   * near singular updates.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, pivot_warning_tol );

  /** \brief Set the relative tolerance for pivots in the schur complement under
   * which a singularity exception will be thrown (see MatrixSymAddDelUpdateable)
   * for singular updates.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, pivot_singular_tol );

  /** \brief Set the relative tolerance for pivots in the schur complement over
   * which a wrong inertia exception will be throw (see MatrixSymAddDelUpdateable)
   * for updates with the wrong inertia.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, pivot_wrong_inertia_tol );

  /** \brief Set whether equality constriants are to be added to the active set
   * initialy to the schur complement or not.
   */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( bool, add_equalities_initially );

  /** \brief . */
  QPSolverRelaxedQPSchur(
    const init_kkt_sys_ptr_t&    init_kkt_sys       = Teuchos::null
    ,const constraints_ptr_t&    constraints        = Teuchos::rcp(new QPSchurPack::ConstraintsRelaxedStd)
    ,value_type                  max_qp_iter_frac   = 10.0
    ,value_type                  max_real_runtime   = 1e+20
    ,QPSchurPack::ConstraintsRelaxedStd::EInequalityPickPolicy
                                 inequality_pick_policy
                                     = QPSchurPack::ConstraintsRelaxedStd::ADD_BOUNDS_THEN_MOST_VIOLATED_INEQUALITY
    ,ELocalOutputLevel           print_level             = USE_INPUT_ARG  // Deduce from input arguments
    ,value_type                  bounds_tol              = -1.0           // use default
    ,value_type                  inequality_tol          = -1.0	          // use default
    ,value_type                  equality_tol            = -1.0	          // use default
    ,value_type                  loose_feas_tol          = -1.0	          // use default
    ,value_type                  dual_infeas_tol         = -1.0	          // use default
    ,value_type                  huge_primal_step        = -1.0	          // use defalut
    ,value_type                  huge_dual_step          = -1.0	          // use default
    ,value_type                  bigM                    = 1e+10
    ,value_type                  warning_tol             = 1e-10
    ,value_type                  error_tol               = 1e-5
    ,size_type                   iter_refine_min_iter    = 1
    ,size_type                   iter_refine_max_iter    = 3
    ,value_type                  iter_refine_opt_tol     = 1e-12
    ,value_type                  iter_refine_feas_tol    = 1e-12
    ,bool                        iter_refine_at_solution = true
    ,value_type                  pivot_warning_tol       = 1e-8
    ,value_type                  pivot_singular_tol      = 1e-11
    ,value_type                  pivot_wrong_inertia_tol = 1e-11
    ,bool                        add_equalities_initially= true
    );

  /** \brief . */
  ~QPSolverRelaxedQPSchur();

  /** @name Overridden from QPSolverRelaxed */
  //@{

  /** \brief . */
  QPSolverStats get_qp_stats() const;
  /** \brief . */
  void release_memory();

  //@}

protected:

  /** @name Overridden from QPSolverRelaxed */
  //@{

  /** \brief . */
  QPSolverStats::ESolutionType imp_solve_qp(
    std::ostream* out, EOutputLevel olevel, ERunTests test_what
    ,const Vector& g, const MatrixSymOp& G
    ,value_type etaL
    ,const Vector* dL, const Vector* dU
    ,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b
    ,const Vector* eL, const Vector* eU
    ,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f
    ,value_type* obj_d
    ,value_type* eta, VectorMutable* d
    ,VectorMutable* nu
    ,VectorMutable* mu, VectorMutable* Ed
    ,VectorMutable* lambda, VectorMutable* Fd
    );

  //@}

private:

  // ////////////////////////////
  // Private data members

  QPSolverStats                    qp_stats_;
  QPSchur                          qp_solver_;
  QPSchurPack::QPInitFixedFreeStd  qp_;
  MatrixSymHessianRelaxNonSing     G_relaxed_;
  VectorMutableDense         bigM_vec_;
  MatrixSymAddDelBunchKaufman      schur_comp_;
  DVector                           g_relaxed_;
  DVector                           b_X_;
  InitKKTSystem::Ko_ptr_t          Ko_;
  DVector                           fo_;

}; // end class QPSolverRelaxedQPSchur

} // end namespace ConstrainedOptPack

#endif // QP_SOLVER_RELAXED_QP_SCHUR_H