/usr/include/trilinos/ConstrainedOptPack_QPSolverRelaxed.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef QP_SOLVER_RELAXED_H
#define QP_SOLVER_RELAXED_H
#include "ConstrainedOptPack_QPSolverStats.hpp"
#include "Teuchos_StandardMemberCompositionMacros.hpp"
namespace ConstrainedOptPack {
/** \brief Solves Quadratic Programs (QPs) of several different forms while
* allowing a relaxation of the constraints.
*
* The formulation for the QP being solved is:
\verbatim
(1.1) min g'*d + 1/2*d'*G*d + M(eta)
d <: R^n
s.t.
(1.2) etaL <= eta
(1.3) dL <= d <= dU
(1.4) eL <= op(E)*d - b*eta <= eU
(1.5) op(F)*d + (1 - eta) * f = 0
\endverbatim
* The relaxation is used to ensure that the QP will have a solution
* (<tt>eta = 1</tt>, <tt>d = 0</tt> guaranteed if <tt>dL <= 0 <= dU</tt>
* and <tt>eL <= b <= eU</tt>). If the function <tt>M(eta)</tt> in the
* objective is large enough, then the constraint <tt>etaL <= eta</tt> will be active
* if a feasible region exists. The form of the function <tt>M(eta)</tt> is not
* specified by this interface but is defined as appropriate for each individual
* QP solver method and implementation.
*
* The Lagrangian for the QP in (1) is:
\verbatim
L = g' * d + 1/2 * d' * G * d + M(eta)
+ kappa * (etaL - eta)
+ nuL' * (dL - d)
+ nuU' * (d - dU)
+ muL' * (eL - op(E)*d - b*eta)
+ muU' * (op(E)*d - b*eta - eU)
+ lambda' * (op(F)*d + (1 - eta) * f)
\endverbatim
* The optimality conditions for this QP are:
\verbatim
Linear dependence of gradients:
(2) d(L)/d(d) = g + G*d - nuL + nuU + op(E)'*(- muL + muU) + op(F)'*lambda
= g + G*d + nu + op(E)'*mu + op(F)'*lambda = 0
where: nu = nuU - nuL, mu = muU - muL
(3) d(L)/d(eta) = d(M)/d(eta) - kappa - b'*mu - f'*lambda = 0
Feasibility:
(4.1) etaL <= eta
(4.2) dL <= d <= dU
(4.3) eL <= op(E)*d - b*eta <= eU
(4.4) op(F)*d + (1 - eta) * f = 0
Complementarity:
(5.1) nu(i) * (dL - d)(i) = 0, if nu(i) <= 0, i = 1...n
(5.2) nu(i) * (d - dU)(i) = 0, if nu(i) >= 0, i = 1...n
(5.3) mu(j) * (eL - op(E)*d + b*eta)(j) = 0, if mu(j) <= 0, j = 1...m_in
(5.4) mu(j) * (op(E)*d - b*eta - eU)(j) = 0, if mu(j) >= 0, j = 1...m_in
Nonnegativity of Lagrange Multipliers for Inequality Constraints:
(6.1) nu(i) <= 0 if (dL - d)(i) = 0, i = 1...n
(6.2) nu(i) >= 0 if (d - dU)(i) = 0, i = 1...n
(6.3) mu(j) <= 0 if (eL - op(E)*d - b*eta)(j) = 0, j = 1...m_in
(6.4) mu(j) >= 0 if (op(E)*d - b*eta - eU)(j) = 0, j = 1...m_in
\endverbatim
* The optimal <tt>d</tt> and <tt>eta</tt> are determined as well as the lagrange multipliers
* for the constriants:
\verbatim
nu : dL <= d <= dU
mu : eL <= op(E)*d - b*eta <= eU
lambda : op(F)*d + (1 - eta) * f = 0
\endverbatim
* The lagrange multiper <tt>kappa</tt> for the constraint <tt>etaL <= eta</tt> is not returned
* since if this constraint is not active, then <tt>kappa == 0</tt> and all of the multiplier
* estimates will be off because of the arbitrarily large value of <tt>d(M)/d(eta)</tt> in
* the optimality condition (3).
*/
class QPSolverRelaxed {
public:
/** @name Public Types */
//@{
/// Thrown if the QP is unbounded.
class Unbounded : public std::logic_error
{public: Unbounded(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown if the QP is infeasible.
class Infeasible : public std::logic_error
{public: Infeasible(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown if there is invalid input
class InvalidInput : public std::logic_error
{public: InvalidInput(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown if a test failed
class TestFailed : public std::logic_error
{public: TestFailed(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Enumeration for the amount of output to create from \c solve_qp().
enum EOutputLevel {
PRINT_NONE = 0,
PRINT_BASIC_INFO = 1,
PRINT_ITER_SUMMARY = 2,
PRINT_ITER_STEPS = 3,
PRINT_ITER_ACT_SET = 4,
PRINT_ITER_VECTORS = 5,
PRINT_EVERY_THING = 6
};
/// Enumeration for if to run internal tests or not.
enum ERunTests { RUN_TESTS, NO_TESTS };
//@}
/** @name Initializers */
//@{
/// Set the scalar that will be used to identigy infinite bounds
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, infinite_bound );
/** \brief . */
QPSolverRelaxed();
/** \brief . */
virtual ~QPSolverRelaxed() {}
//@}
/** @name Interface methods with default implementations */
//@{
/** \brief Solve the QP.
*
* @param out [out] If out != NULL then output is printed to this stream
* depending on the value of <tt>olevel</tt>.
* @param olevel [in] Determines the amount of output to print to *out.
* The exact type of output is determined by the implementing
* subclass but here is the sugguested behavior:
* PRINT_NONE : Don't print anything (same as out == NULL).
* PRINT_BASIC_INFO : Only print basic information about
* the solution of the QP. Amount of output = O(1).
* PRINT_ITER_SUMMARY : Prints a summary of each iteration
* in the algorithm. Amount of output = O(num_iter).
* PRINT_ITER_STEPS : Prints output about each iteration
* in more detail than PRINT_ITER_SUMMARY but is still
* O(num_iter).
* PRINT_ITER_VECTORS : Prints out important vectors computed
* in each QP iteration. Mainly useful for debugging.
* Amount of output = O((num_iter)(n)).
* PRINT_EVERY_THING : Print out nearly every important
* quantity within each QP iteration including
* vectors and matrices. Mainly useful for debugging.
* Amount of output = O((num_iter)(n-m)^2)+O((num_iter)(n))
* @param test_what [in] Determines if internal validation tests are performed.
* The optimality conditions for the QP are not checked
* internally, this is something that client can (and should)
* do independently (see QPSolverRelaxedTester).
* RUN_TESTS : As many validation/consistency tests
* are performed internally as possible. If a test
* fails then a TestFailed execption will be thrown.
* The subclasses determine what the tests are and
* what failing a test means.
* NO_TEST : No tests are performed internally. This is
* to allow the fastest possible execution.
* @param g [in] vector (size n): objective 1st order
* @param G [in] matrix (size n x n): objective, second order Hessian
* @param etaL [in] scalar: Lower bound for relaxation variable (0 usually)
* @param dL [in] vector (size n): lower variable bounds
* @param dU [in] vector (size n): upper variable bounds
* @param E [in] matrix (op(E)) (size m_in x n): inequality constraint Jacobian matrix
* @param trans_E [in] E is transposed?
* @param b [in] vector (size m_in): relaxation vector for inequalities
* @param eL [in] vector (size m_in): lower inequality bounds
* @param eU [in] vector (size m_in): upper inequality bounds
* @param F [in] matrix (op(F) size m_eq x n): equality constraint Jacobian matrix
* @param trans_F [in] F is transposed?
* @param f [in] vector (size m_eq): equality constraint right hand side
* @param obj_d [out] If obj_d != NULL on input, then obj_d will be set with the
* value of obj_d = g'*d + 1/2*d'*G*d for the value of d
* returned.
* @param eta [out] scalar: Relaxation variable
* @param d [in/out] vector (size n): On input, it contains an intial estimate
* of the solution. On output it is the estimate of the solution
* (see the return value).
* @param nu [in/out] vector (size n): Lagrange multipilers
* for variable bounds. On input it contains the
* estimate of the active set and multiplier values. If
* nu->nz() == 0 on input then there is no estimate for the
* active-set. Note that having nu->nz() > 0 on input is not
* a commandment to perform a warm start. Ultimatly this
* decision is up to the subclass and lower level
* subclass/client interactions.
* On output nu contains the active-set for the
* returned solution.
* @param mu [in/out] vector (size m_in): Lagrange multipilers
* for the general inequality constriants.
* On input it contains the
* estimate of the active set and multiplier values. If
* mu->nz() == 0 on input then there is no estimate for the
* active-set. Note that having mu->nz() > 0 on input is not
* a commandment to perform a warm start. Ultimatly this
* decision is up to the subclass and lower level
* subclass/client interactions.
* On output mu contains the active-set for the
* returned solution.
* @param Ed [in/out] vector (size m_in) If Ed!=NULL on input, then on output
* Ed will contain the product opt(E)*d for the value of
* d on output. This is included to save user from having
* to perform this computation again if it has already been
* done internally.
* @param lambda [out] vector (size m_eq): Lagrange multipilers for equality
* constraints.
* @param Fd [in/out] vector (size m_eq) If Fd!=NULL on input, then on output
* Fd will contain the product opt(F)*d for the value of
* d on output. This is included to save user from having
* to perform this computation again if it has already been
* done internally.
*
* @return
* <tt>OPTIMAL_SOLUTION</tt> : Returned point satisfies the optimality conditions
* in (2)-(6) above. This will generally be the case if the maximum
* number of QP iterations is not exceeded and none of the possible
* exeptions are thrown.
* <tt>PRIMAL_FEASIBLE_POINT</tt> : Returned point satisfies the feasibility
* and complementarity conditions in (4)-(5) above.
* For example, a primal, active-set QP algorithm may return this if
* the maxinum number of iterations has been exceeded durring the
* optimality phase (phase 2).
* <tt>DUAL_FEASIBLE_POINT</tt> : Returned point satisfies the optimality conditions
* in (2)-(4.1),(4.4),(5) and (6) but not the inequality constraints in (4.2),(4.3).
* For example, a dual, active-set QP algorithm might return this
* value if the maximum number of iterations has been exceeded.
* <tt>SUBOPTIMAL_POINT</tt> : Returned point does not accurately enough satisfy any of the
* optimality conditions in (2)-(6) above but the solution may still be
* of some use. For example, an active-set (primal, or dual) QP algorithm
* might return this if there is some serious illconditioning in the QP
* and a solution satisfying the desired tolerance could not be found.
* Also, a primal-dual interior point QP solver might return this if the
* maxinum number of iterations is exceeded. The returned solution may
* still be of some use to the client though.
*
* This function may throw many exceptions. If there is some problem with
* the QP definition the exceptions <tt>Unbounded</tt>, <tt>Infeasible</tt> or <tt>InvalidInput</tt>
* may be thrown. If the QP is illconditioned other exeptions may be thrown
* by this function or perhaps warning messages may be printed to <tt>*out</tt> and
* a value other than <tt>OPTIMAL_SOLUTION</tt> may be returned.
*
* After this function returns, <tt>this->get_qp_stats()</tt> can be called to return
* some statistics for the QP just solved (or attempted to be solved).
*
* Note, the variable bounds can be removed by passing in <tt>dL.nz() == dU.nz() == 0</tt>.
*
* By default this function calls the function <tt>this->solve_qp()</tt> which accepts
* various sets of constraints.
*/
virtual QPSolverStats::ESolutionType solve_qp(
std::ostream* out, EOutputLevel olevel, ERunTests test_what
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector& dL, const Vector& dU
,const MatrixOp& E, BLAS_Cpp::Transp trans_E, const Vector& b
,const Vector& eL, const Vector& eU
,const MatrixOp& F, BLAS_Cpp::Transp trans_F, const Vector& f
,value_type* obj_d
,value_type* eta, VectorMutable* d
,VectorMutable* nu
,VectorMutable* mu, VectorMutable* Ed
,VectorMutable* lambda, VectorMutable* Fd
);
/** \brief Solve the QP without general equality constrants.
*
* By default this function calls <tt>solve_qp()</tt> which accepts
* various sets of constraints.
*/
virtual QPSolverStats::ESolutionType solve_qp(
std::ostream* out, EOutputLevel olevel, ERunTests test_what
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector& dL, const Vector& dU
,const MatrixOp& E, BLAS_Cpp::Transp trans_E, const Vector& b
,const Vector& eL, const Vector& eU
,value_type* obj_d
,value_type* eta, VectorMutable* d
,VectorMutable* nu
,VectorMutable* mu, VectorMutable* Ed
);
/** \brief Solve the QP without general inequality constrants.
*
* By default this function calls <tt>solve_qp()</tt> which accepts
* various sets of constraints.
*/
virtual QPSolverStats::ESolutionType solve_qp(
std::ostream* out, EOutputLevel olevel, ERunTests test_what
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector& dL, const Vector& dU
,const MatrixOp& F, BLAS_Cpp::Transp trans_F, const Vector& f
,value_type* obj_d
,value_type* eta, VectorMutable* d
,VectorMutable* nu
,VectorMutable* lambda, VectorMutable* Fd
);
/** \brief Solve the QP without general equality or inequality constrants (no relaxation
* needed).
*
* By default this function calls <tt>solve_qp()</tt> which accepts
* various sets of constraints.
*/
virtual QPSolverStats::ESolutionType solve_qp(
std::ostream* out, EOutputLevel olevel, ERunTests test_what
,const Vector& g, const MatrixSymOp& G
,const Vector& dL, const Vector& dU
,value_type* obj_d
,VectorMutable* d
,VectorMutable* nu
);
/** \brief This is a more flexible function where the client can
* set different constraints to be included.
*
* The default implementation of this function validates the compatibily
* of the input objects and that the proper sets of constraints are set
* by calling \c validate_input() first. Refere to the method
* \c validate_input() to see how arguments are set. After input validation,
* \c print_qp_input() is called to print the QP input arguments. Then
* \c imp_solve_qp() is called which must be implemented by the subclass.
* Finally, \c print_qp_output() is called to print the QP output.
*/
virtual QPSolverStats::ESolutionType solve_qp(
std::ostream* out, EOutputLevel olevel, ERunTests test_what
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector* dL, const Vector* dU
,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b
,const Vector* eL, const Vector* eU
,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f
,value_type* obj_d
,value_type* eta, VectorMutable* d
,VectorMutable* nu
,VectorMutable* mu, VectorMutable* Ed
,VectorMutable* lambda, VectorMutable* Fd
);
/** \brief Get the statistics of the last QP solved.
*
* solution: Returns the type of solution found. See \c solve_qp()<br>
* num_iter: Gives the number of QP iterations on output.<br>
* num_adds: Gives the number of iterations where a variable
* was added to the active-set. This does not include
* variables that where part of the initial estimate in nu
* for a warm start.<br>
* num_drops: Gives the number QP iterations where a variable was
* dropped.<br>
* warm_start: Returns if a warm start was performed.<br>
* infeas_qp: Returns if eta > 0.0.
*/
virtual QPSolverStats get_qp_stats() const = 0;
/** \brief Release any memory that is being used.
*/
virtual void release_memory() = 0;
//@}
/** @name Static utility functions */
//@{
/** \brief This is a (static) function that is used as a utility to
* validate the input arguments to \c solve_qp().
*
* The input arguments are validated as follows.
*
* If the variable bounds are excluded then:
* <tt>void(dL) == void(dU) == void(nu) == NULL</tt>
*
* If the general inequality constraints are excluded then:
* <tt>void(E) == void(b) == void(eL) == void(eU) == void(mu) == NULL</tt>
*
* If the equality constraints are excluded then:
* <tt>void(F) == void(f) == void(lambda) == NULL</tt>
*
* If the equality and inequality constraints are excluded then:
* <tt>eta == NULL</tt>
* <tt>void(E) == void(b) == void(eL) == void(eU) == void(mu) == NULL</tt>
* <tt>void(F) == void(f) == void(lambda) == NULL</tt>
*
* If any errors are found an std::invalid_argument exception
* will be thrown.
*/
static void validate_input(
const value_type infinite_bound
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector* dL, const Vector* dU
,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b
,const Vector* eL, const Vector* eU
,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f
,const value_type* obj_d
,const value_type* eta, const Vector* d
,const Vector* nu
,const Vector* mu, const Vector* Ed
,const Vector* lambda, const Vector* Fd
);
/** \brief Utility (static) function for printing the input input/output arguments before
* the QP solver is run. The QP solver subclasses can call this function.
*
* @param out [out] stream printed to if <tt>out != NULL</tt>
* @param olevel [in] Determines what is printed.
* \begin{description}
* \item[(int)olevel >= (int)PRINT_ITER_STEPS] Prints O(1) information about the arguments.
* \item[(int)olevel >= (int)PRINT_ITER_ACT_SET] Prints the contents of <tt>nu</tt>, <tt>mu</tt>, and <tt>lambda</tt>.
* Output is proportional to the number of active constraints O(nu->nz() + mu->nz() + lambda->dim()).
* \item[(int)olevel >= (int)PRINT_ITER_VECTORS] Prints the contents of all the vectors.
* Output is proportional to O(d->dim()).
* \item[(int)olevel >= (int)PRINT_EVERY_THING] Prints the contents of all the vectors and matrices.
* Output could be as large as O(d->dim() * d->dim()) or larger.
* \end{description}
*/
static void print_qp_input(
const value_type infinite_bound
,std::ostream* out, EOutputLevel olevel
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector* dL, const Vector* dU
,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b
,const Vector* eL, const Vector* eU
,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f
,value_type* eta, VectorMutable* d
,VectorMutable* nu
,VectorMutable* mu
,VectorMutable* lambda
);
/** \brief Utility (static) function for printing the output input/output arguments after
* the QP solver is run. The QP solver subclasses can call this function.
*
* @param out [out] stream printed to if <tt>out != NULL</tt>
* @param olevel [in] Determines what is printed.
* \begin{description}
* \item[(int)olevel >= (int)PRINT_ITER_STEPS] Prints O(1) information about the arguments.
* \item[(int)olevel >= (int)PRINT_ITER_ACT_SET] Prints the contents of <tt>nu</tt>, <tt>mu</tt>, and <tt>lambda</tt>.
* Output is proportional to the number of active constraints O(nu->nz() + mu->nz() + lambda->dim()).
* \item[(int)olevel >= (int)PRINT_ITER_VECTORS] Prints the contents of all the vectors.
* Output is proportional to O(d->dim()).
* \item[(int)olevel >= (int)PRINT_EVERY_THING] Prints the contents of all the vectors and matrices.
* Output could be as large as O(d->dim() * d->dim()) or larger.
* \end{description}
*/
static void print_qp_output(
const value_type infinite_bound
,std::ostream* out, EOutputLevel olevel
,const value_type* obj_d
,const value_type* eta, const Vector* d
,const Vector* nu
,const Vector* mu, const Vector* Ed
,const Vector* lambda, const Vector* Fd
);
//@}
protected:
/** @name Pure virtual methods that must be overridden by subclass */
//@{
/** \brief Subclasses are to override this to implement the QP algorithm.
*
* Called by default implementations of \c solve_qp() methods.
*/
virtual QPSolverStats::ESolutionType imp_solve_qp(
std::ostream* out, EOutputLevel olevel, ERunTests test_what
,const Vector& g, const MatrixSymOp& G
,value_type etaL
,const Vector* dL, const Vector* dU
,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b
,const Vector* eL, const Vector* eU
,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f
,value_type* obj_d
,value_type* eta, VectorMutable* d
,VectorMutable* nu
,VectorMutable* mu, VectorMutable* Ed
,VectorMutable* lambda, VectorMutable* Fd
) = 0;
//@}
}; // end class QPSovlerRelaxed
} // end namespace ConstrainedOptPack
#endif // QP_SOLVER_RELAXED_H
|