/usr/include/trilinos/ConstrainedOptPack_QPSchur.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef QPSCHUR_H
#define QPSCHUR_H
#include <ostream>
#include <map>
#include <vector>
#include "ConstrainedOptPack_Types.hpp"
#include "ConstrainedOptPack_MatrixSymAddDelUpdateableWithOpNonsingular.hpp"
#include "AbstractLinAlgPack_GenPermMatrixSlice.hpp"
#include "AbstractLinAlgPack_SpVectorClass.hpp"
#include "AbstractLinAlgPack_MatrixSymOpNonsing.hpp"
#include "AbstractLinAlgPack_MatrixSymOp.hpp"
#include "AbstractLinAlgPack_MatrixOp.hpp"
#include "AbstractLinAlgPack_MatrixSymAddDelUpdateable.hpp"
#include "AbstractLinAlgPack_MatrixOpSerial.hpp"
#include "DenseLinAlgPack_DMatrixClass.hpp"
#include "Teuchos_StandardCompositionMacros.hpp"
#include "Teuchos_StandardMemberCompositionMacros.hpp"
#include "StopWatchPack_stopwatch.hpp"
namespace ConstrainedOptPack {
namespace QPSchurPack {
/// Utility class for a ranged check vector
template < class T >
class vector_one_based_checked : public std::vector<T>
{
typedef vector_one_based_checked this_t;
public:
/// one based indexing
T& operator()( typename this_t::size_type i )
{
#ifdef LINALGPACK_CHECK_RANGE
return this->at(i-1);
#else
return this->operator[](i-1);
#endif
}
/// one based indexing
T operator()( typename this_t::size_type i ) const
{
#ifdef LINALGPACK_CHECK_RANGE
return this->at(i-1);
#else
return this->operator[](i-1);
#endif
}
}; // end class vector_one_based
class Constraints;
class QP;
/** \brief Represents the QP to be solved by QPSchur {abstract}.
*
* In order to solve a QP, clients must define subclasses
* for this interface and the \c Constraints interface
* defined later. This is where the specialized properties
* of the QP are exploited. For certain types of QPs, standard
* implementation classes can be defined.
*
* Here the QP is of the form:
\verbatim
(1.a) min g'*x + 1/2*x'*G*x
(1.b) s.t. A'*x = c
(1.c) cl_bar <= A_bar'*x <= cu_bar
where:
x <: R^n
g <: R^n
G <: R^(n x n)
A <: R^(n x m)
c <: R^m
A_bar <: R^(n x m_bar)
cl_bar, cu_bar <: R^m_bar
\endverbatim
* Above, <tt>cl_bar <= A_bar'*x <= cu_bar</tt> may represent variable bounds, general
* inequalities and equality constraints and these constraints are represented
* by the class \c Constraints.
*
* When solving the above QP using the schur complement QP solver we start out with
* a KKT system with a subset of variables initially fixed at a bound:
\verbatim
[ G_RR G_RX A_F 0 ] [ x_R ] [ - g_R ]
[ G_RX' G_XX A_X I ] [ x_X ] [ - g_X ]
[ A_R' A_X' 0 0 ]*[ lambda ] = [ c ]
[ I 0 0 ] [ mu_X ] [ b_X ]
\endverbatim
* We can simplify the above system by solving for the initially
* fixed variables and removing them from the initial KKT system to give:
\verbatim
x_X = b_X
[ G_RR A_R ] [ x_R ] [ - g_R - G_RX*b_X ]
[ A_R' 0 ] * [ lambda ] = [ c - A_X'*b_X ]
\_______________/ \________/ \__________________/
Ko vo fo
mu_X = - g_X - G_RX'*x_R - G_X*b_X - A_X*lambda
where:
n_X = n - n_R
x_R = Q_R'*x <: R^n_R
g_R = Q_R'*g <: R^n_R
G_RR = Q_R'*G*Q_R <: R^(n_R x n_R)
G_RX = Q_R'*G*Q_X <: R^(n_R x n_X)
G_XX = Q_X'*G*Q_X <: R^(n_X x n_X)
A_R = Q_R'*A <: R^(n_R x m)
A_X = Q_X'*A <: R^(n_X x m)
Q_R <: R^(n x n_R)
Q_X <: R^(n x n_X)
\endverbatim
* This class is an interface for encapsulating the QP. Operations are available
* for accessing <tt>g</tt>, <tt>G</tt>, <tt>A</tt>, <tt>Ko</tt>, <tt>vo</tt>, and
* <tt>fo</tt> as well as the mapping
* matrices <tt>Q_R</tt> and <tt>Q_X</tt> (both ordered by row). Also, operations are available
* for accessing data structures that describe the set of initially fixed and free
* variables. See the \c Constraints interface for how to access the constraints
* in (1.c) and the matrix <tt>A_bar</tt>.
*/
class QP {
public:
// /////////////////
// Public Types
/** \brief . */
typedef vector_one_based_checked<EBounds> x_init_t;
/** \brief . */
typedef vector_one_based_checked<size_type> l_x_X_map_t;
/** \brief . */
typedef vector_one_based_checked<size_type> i_x_X_map_t;
/** \brief . */
typedef QPSchurPack::Constraints Constraints;
// /////////////////
// Public Interface
/** \brief . */
virtual ~QP()
{}
// ///////////////////////////////////////
// Initial active set independent members
/** \brief . */
virtual size_type n() const = 0;
/** \brief . */
virtual size_type m() const = 0;
/** \brief . */
virtual const DVectorSlice g() const = 0;
/** \brief . */
virtual const MatrixSymOp& G() const = 0;
/// If m == 0 then don't call this, it may throw an exception or worse.
virtual const MatrixOp& A() const = 0;
// /////////////////////////////////////
// Initial active set specific members
/** \brief . */
virtual size_type n_R() const = 0;
/** \brief Return the status of a variable initially.
*
* For 1 <= i <= n:
\verbatim
/ FREE : x(i) is initially free
| LOWER : x(i) is initially fixed at xl(i)
x_init(i) = | UPPER : x(i) is initially fixed at xu(i)
\ EQUALITY : x(i) fixed at xl(i) = xu(i) always
\endverbatim
*/
virtual const x_init_t& x_init() const = 0;
/** \brief Map from full x(i) to initially fixed x_X(l).
*
* For 1 <= i <= n:
*
\verbatim
/ l : x(i) = x_X(l) = b_X(l) initially (1 <= l <= n_X)
l_x_X_map(i) = |
\ 0 : otherwise
\endverbatim
*
*/
virtual const l_x_X_map_t& l_x_X_map() const = 0;
/** \brief Map from initially fixed x_X(l) to full x(i).
*
* For 1 <= l <= n_X:
*
\verbatim
i_x_X_map(l) = i : x(i) = x_X(l) = b_X(l) initially (1 <= i <= n)
\endverbatim
*
*/
virtual const i_x_X_map_t& i_x_X_map() const = 0;
/** \brief . */
/* The bounds of the initially fixed variables.
*
* For 1 <= l <= n_X:
*
\verbatim
/ xl(i_x_X_map(l)) : if x_init(i_x_X_map(l)) == LOWER
b_X(l) = | xu(i_x_X_map(l)) : if x_init(i_x_X_map(l)) == UPPER
\ xl(i_x_X_map(l)) = xu(i_x_X_map(l)) : if x_init(i_x_X_map(l)) == EQUALITY
\endverbatim
*
*/
virtual const DVectorSlice b_X() const = 0;
/// (Q_R().ordered_by() == BY_ROW)
virtual const GenPermMatrixSlice& Q_R() const = 0;
/// (Q_X().ordered_by() == BY_ROW)
virtual const GenPermMatrixSlice& Q_X() const = 0;
/** \brief . */
virtual const MatrixSymOpNonsing& Ko() const = 0;
/** \brief . */
virtual const DVectorSlice fo() const = 0;
// //////////////////////////////////////////////////////////
// Additional constaints for cl_bar <= A_bar'*x <= cu_bar
/** \brief . */
virtual Constraints& constraints() = 0;
/** \brief . */
virtual const Constraints& constraints() const = 0;
/** \brief Dump the definition of the QP to a stream.
*
* This function is only to be used for debugging small problems.
*/
virtual void dump_qp( std::ostream& out );
}; // end class QP
/** \brief Represents the extra constraints in the QP to be satisfied
* by the schur complement QP solver QPSchur {abstract}.
*
* This class is only ment to be used in conjunction with the class \c QP
* and \c QPSchur. Its interface is designed to be minimal with respect to
* the needs of the <tt>QPSchur</tt> solver. However, this interface may be useful
* for any primal-dual QP solver.
*
* These constraints are:
\verbatim
(1.c) cl_bar <= A_bar'*x <= cu_bar
where:
A_bar <: R^(n x m_bar)
cl_bar, cu_bar <: R^m_bar
\endverbatim
*
* These constraints are also partitioned as:
\verbatim
s.t.
[ xl ] [ I ] [ xu ]
[ cl_breve ] <= [ A_breve' ]*x <= [ cu_breve ]
where:
I <: R^(n x n)
xl, xu <: R^n, are the variable bounds for variables that have bounds (sparse)
A_breve <: R^(n x m_breve), is the Jacobian for the general constraints
cl_breve, cu_breve <: R^m_breve, are bounds for general constraints
\endverbatim
*
* Here <tt>m_bar = n + m_breve</tt>
*
* Above, some of the bounds in <tt>xl</tt>, <tt>xu</tt>, <tt>cl_breve</tt>,
* and <tt>cu_breve</tt> may be <tt>-inf</tt> or <tt>+inf</tt> and will
* therefore never be violated and never be added to the active set.
* Also, some of the lower and upper bounds may be equal which turns those
* inequality constraints into equality constraints (or fixed variables).
*/
class Constraints {
public:
/** \brief . */
enum EPickPolicy { ANY_VIOLATED, MOST_VIOLATED };
/** \brief . */
virtual ~Constraints() {}
/** \brief . */
virtual size_type n() const = 0;
/** \brief . */
virtual size_type m_breve() const = 0;
/** \brief . */
virtual const MatrixOp& A_bar() const = 0;
/// Set the policy used to pick a violated constraint.
virtual void pick_violated_policy( EPickPolicy pick_policy ) = 0;
/** \brief . */
virtual EPickPolicy pick_violated_policy() const = 0;
/** \brief Pick a violated constraint.
*
* @param x [in] Trial point to pick a violated constraint at.
* @param j_viol [out] Indice of violated constraint. j_viol = 0 if
* no constraint is violated by more that some tolerance.
* @param constr_val [out] The value if the violated constraint a_bar(j)'*x.
* @param viol_bnd_val [out] The value if the violated bound.
* @param norm_2_constr[out] The 2 norm of the violated constraint ||a_bar(j)||2
* @param bnd [out] Classification of the bound being violated.
* @param can_ignore [out] True if the constraint can be ignored if it is linearly
* dependent.
*/
virtual void pick_violated(
const DVectorSlice& x, size_type* j_viol, value_type* constr_val
,value_type* viol_bnd_val, value_type* norm_2_constr, EBounds* bnd, bool* can_ignore
) const = 0;
/** \brief Inform to ignore the jth constraint the next time pick_violated(...) is called.
*/
virtual void ignore( size_type j ) = 0;
/** \brief Return the bound for a constraint.
*
* @param j [in] Indice of the constraint of the bound to obtain.
* @param bnd [in] Which bound to obtain (UPPER or LOWER).
* @return
* xl(j) [ 0 < j < n, bnd == LOWER ]<br>
* xu(j) [ 0 < j < n, bnd == UPPER ]<br>
* cl_breve(j - n) [ n + 1 < j < n + m_breve, bnd == LOWER ]<br>
* cu_breve(j - n) [ n + 1 < j < n + m_breve, bnd == UPPER ]<br>
*/
virtual value_type get_bnd( size_type j, EBounds bnd ) const = 0;
}; // end class Constraints
} // end namespace QPSchurPack
/** \brief Solves a Quadratic Program with a dual QP method using a schur complement
* factorization.
*
* See the paper "QPSchur: A Primal-Dual Active-Set Quadratic Programming
* Algorithm Using a Schur Complement Factorization Method" for a description
* of what this class does.
*/
class QPSchur {
public:
/** @name Public Types */
//@{
/** \brief . */
typedef QPSchurPack::QP QP;
/** \brief . */
typedef MatrixSymAddDelUpdateable MSADU;
/// Thrown if a test failed
class TestFailed : public std::logic_error
{public: TestFailed(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown if constraints are inconsistant (no feasible region)
class InconsistantConstraintsException : public std::logic_error
{public: InconsistantConstraintsException(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown if there is some numerical instability
class NumericalInstabilityException : public std::runtime_error
{public: NumericalInstabilityException(const std::string& what_arg) : std::runtime_error(what_arg) {}};
/// Thrown if during the course of the primal-dual iteration a non-dual feasible point if found.
class DualInfeasibleException : public NumericalInstabilityException
{public: DualInfeasibleException(const std::string& what_arg)
: NumericalInstabilityException(what_arg) {}};
/// Enumeration for if to run internal tests or not.
enum ERunTests { RUN_TESTS, NO_TESTS };
/// solve_qp return values
enum ESolveReturn {
OPTIMAL_SOLUTION
,MAX_ITER_EXCEEDED
,MAX_RUNTIME_EXEEDED_FAIL
,MAX_RUNTIME_EXEEDED_DUAL_FEAS
,MAX_ALLOWED_STORAGE_EXCEEDED
,INFEASIBLE_CONSTRAINTS
,NONCONVEX_QP
,DUAL_INFEASIBILITY
,SUBOPTIMAL_POINT
};
/// Output level
enum EOutputLevel {
NO_OUTPUT = 0
,OUTPUT_BASIC_INFO = 1
,OUTPUT_ITER_SUMMARY = 2
,OUTPUT_ITER_STEPS = 3
,OUTPUT_ACT_SET = 4
,OUTPUT_ITER_QUANTITIES = 5
};
/// Value for near degenerate lagrange multipliers
static value_type DEGENERATE_MULT;
//@}
/** @name Public Member functions */
//@{
/// Schur complement matrix object S_hat
STANDARD_COMPOSITION_MEMBERS( MatrixSymAddDelUpdateableWithOpNonsingular, schur_comp );
/** \brief Set the maximum number of primal-dual QP iterations to take.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( size_type, max_iter );
/** \brief Set the maximum wall clock runtime (in minutes).
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, max_real_runtime );
/** \brief Set the feasibility tolerance for the constriants.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, feas_tol );
/** \brief Set a looser feasibility tolerance ( > feas_tol )
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, loose_feas_tol );
/** \brief Set the tolerence where a scaled Langrange multiplier is considered
* degenerate.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, dual_infeas_tol );
/** \brief Set the tolerence for the size of the step in the primal space that is considered
* to be a near infinite step. This is used to determine if the KKT
* system is near singular.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, huge_primal_step );
/** \brief Set the tolerence for the size of the step in the dual space that is considered
* to be a near infinite step. This is used to determine if the constriants
* are infeasible.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, huge_dual_step );
/** \brief <<std member comp>> members for the warning tolerance for tests.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, warning_tol );
/** \brief <<std member comp>> members for the error tolerance for tests.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, error_tol );
/** \brief Set the minimum number of refinement iterations to perform
* when using iterative refinement.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( size_type, iter_refine_min_iter );
/** \brief Set the maximum number of refinement iterations to perform
* when using iterative refinement.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( size_type, iter_refine_max_iter );
/** \brief Set the maxinum scaled tolerance the residual of the optimality conditions
* must be before terminating iterative refinement.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, iter_refine_opt_tol );
/** \brief Set the maxinum scaled tolerance the residual of the feasibility conditions
* must be before terminating iterative refinement.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, iter_refine_feas_tol );
/** \brief Set whether iterative refinement is automatically used once the solution
* is found.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( bool, iter_refine_at_solution );
/** \brief Set whether a singular initial schur complement will attempted to be
* salvaged by adding as many nonsingular rows/cols as possible.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( bool, salvage_init_schur_comp );
/** \brief Set the tolerances to use when updating the schur complement.
*/
void pivot_tols( MSADU::PivotTolerances pivot_tols );
/** \brief . */
MSADU::PivotTolerances pivot_tols() const;
/** \brief . */
virtual ~QPSchur() {}
/** \brief . */
QPSchur(
const schur_comp_ptr_t& schur_comp = Teuchos::null
,size_type max_iter = 100
,value_type max_real_runtime = 1e+20
,value_type feas_tol = 1e-8
,value_type loose_feas_tol = 1e-6
,value_type dual_infeas_tol = 1e-12
,value_type huge_primal_step = 1e+20
,value_type huge_dual_step = 1e+20
,value_type warning_tol = 1e-10
,value_type error_tol = 1e-5
,size_type iter_refine_min_iter = 1
,size_type iter_refine_max_iter = 3
,value_type iter_refine_opt_tol = 1e-12
,value_type iter_refine_feas_tol = 1e-12
,bool iter_refine_at_solution = true
,bool salvage_init_schur_comp = true
,MSADU::PivotTolerances pivot_tols = MSADU::PivotTolerances( 1e-8,1e-11,1e-11 )
);
/** \brief Solve a QP.
*
* If the initial schur complement turns out to have the wrong inertia then
* the QP is nonconvex, and the exception \c WrongInteriaUpdateExecption will be thrown.
* Otherwise, unless some other strange exception is thrown, this function
* will return normally (see return).
*
* @param qp [in] The abstraction for the QP being solved
* @param num_act_change
* [in] The number of changes to the
* active set before the primal-dual QP algorithm
* starts.
* @param ij_act_change
* [in] Array (size num_act_change): specifying
* how to initialize the active set. If i = -ij_act_change(s)
* > 0 then the initially fixed variable x(i) is to be
* freed. If j = ij_act_change(s) > 0 then the constraint
* a_bar(j)'*x is to be added to the active set to the
* bound bnd(s). The order of these changes can significantly
* effect the performance of the algorithm if these changes
* are not part of the optimal active set. Put changes that
* you are sure about earlier in the list and those that you
* are not a sure about later.
* @param bnd [in] Array (size num_act_change): bnd(s) gives which bound to
* make active. If ij_act_change(s) < 0 then this is ignored.
* @param out [out] output stream. Iteration information is printed according
* to output_level. If <tt>output_level == NO_OUTPUT</tt> then <tt>out</tt> may
* be <tt>NULL</tt>. If <tt>out==NULL</tt>, then output_level is forced to <tt>NO_OUTPUT</tt>
* @param output_level
* [in] Specifies the level of output (see \c EOutputLevel).
* @param test_what
* [in] Determines if internal validation tests are performed.
* The optimality conditions for the QP are not checked
* internally, since this is something that client can
* (and should) do independently.
* RUN_TESTS : As many validation/consistency tests
* are performed internally as possible. If a test
* fails then a TestFailed execption will be thrown.
* NO_TEST : No tests are performed internally. This is
* to allow the fastest possible execution.
* @param x [out] vector (size qp.n()): Solution or current iteration value
* @param mu [out] sparse vector (size qp.n()): Optimal lagrange multipliers for
* bound constraints. On output mu->is_sorted() == true.
* @param lambda
* [out] vector (size q.m()): Optimal lagrange multipliers for
* equality constraints.
* @param lambda_breve
* [out] sparse vector (size qp.constraints().m_breve()) for the active
* constraints in A_breve. On output lambda_breve->is_sorted() == true.
* @param iter [out] The number of warm start drops and primal-dual iterations.
* @param num_adds [out] The number of updates to the active set where a constraint
* was added. These do not include initially fixed variables.
* @param num_drops [out] The number of updates to the active set where a constraint
* was dropped. These include constraints dropped during a warm start
* as well as during the primal-dual QP iterations.
*
* @return Returns the type of point that x, mu , lambda and lambda_breve represents.
*/
virtual ESolveReturn solve_qp(
QP& qp
,size_type num_act_change, const int ij_act_change[], const EBounds bnds[]
,std::ostream *out, EOutputLevel output_level, ERunTests test_what
,DVectorSlice* x, SpVector* mu, DVectorSlice* lambda, SpVector* lambda_breve
,size_type* iter, size_type* num_adds, size_type* num_drops
);
//@}
/** \brief Represents the matrix U_hat.
*
* This matrix is only ment to be an aggregate of an <tt>ActiveSet</tt>
* object and is only managed by the <tt>ActiveSet</tt> object. It is made
* public so that clients can developed specialized implementations
* if needed.
*/
class U_hat_t : public MatrixOpSerial {
public:
/// Construct uninitialized
U_hat_t();
/// Initialize.
void initialize(
const MatrixSymOp *G
,const MatrixOp *A
,const MatrixOp *A_bar
,const GenPermMatrixSlice *Q_R
,const GenPermMatrixSlice *P_XF_hat
,const GenPermMatrixSlice *P_plus_hat
);
/** \brief . */
const MatrixSymOp& G() const
{ return *G_; }
/** \brief . */
const MatrixOp* A() const
{ return A_; }
/** \brief . */
const MatrixOp& A_bar() const
{ return *A_bar_; }
/** \brief . */
const GenPermMatrixSlice& Q_R() const
{ return *Q_R_; }
/** \brief . */
const GenPermMatrixSlice& P_XF_hat() const
{ return *P_XF_hat_; }
/** \brief . */
const GenPermMatrixSlice& P_plus_hat() const
{ return *P_plus_hat_; }
/** @name Overridden from MatrixBase */
//@{{
/** \brief . */
size_type rows() const;
/** \brief . */
size_type cols() const;
//@}
/** @name Overridden from MatrixOpSerial */
//@{
/** \brief . */
void Vp_StMtV(
DVectorSlice* vs_lhs, value_type alpha, BLAS_Cpp::Transp trans_rhs1
,const DVectorSlice& vs_rhs2, value_type beta
) const;
/** \brief . */
void Vp_StMtV(
DVectorSlice* vs_lhs, value_type alpha, BLAS_Cpp::Transp trans_rhs1
,const SpVectorSlice& sv_rhs2, value_type beta
) const;
//@}
private:
const MatrixSymOp *G_;
const MatrixOp *A_;
const MatrixOp *A_bar_;
const GenPermMatrixSlice *Q_R_;
const GenPermMatrixSlice *P_XF_hat_;
const GenPermMatrixSlice *P_plus_hat_;
}; // end class U_hat_t
/** \brief Represents and manages the active set for the QPSchur algorithm.
*
* This is a concrete type that encapsulates the maintaince of the active set and
* abstracts quantities associated with it.
*
* At each iteration the dual active-set QP algorithm must solve the system:
\verbatim
[ Ko U_hat ] [ v ] [ fo ]
[ U_hat' V_hat ] * [ z_hat ] = [ d_hat ]
\endverbatim
*
* Above, \c U_hat contains the updates to the KKT system for adding constraints
* to the active set and freeing variables that where initially fixed
* and therefore left out of <tt>Ko</tt>.
*
* This object maintains references to objects that represent the current
* augmented KKT system:
\verbatim
MatrixOp : U_hat <: R^((n_R+m) x q_hat)
MatrixSymOp : V_hat <: R^(q_hat x q_hat)
MatrixSymOpNonsing : S_hat <: R^(q_hat x q_hat)
GenPermMatrixSlice : P_XF_hat <: R^(n x q_hat) (q_F_hat nonzeros)
GenPermMatrixSlice : P_FC_hat <: R^(q_hat x q_hat) (q_C_hat nonzeros)
GenPermMatrixSlice : P_plus_hat <: R^((n+m_breve) x q_hat) (q_plus_hat nonzeros)
GenPermMatrixSlice : Q_XD_hat <: R^(n x q_D_hat) (q_D_hat nonzeros)
DVector : d_hat <: R^(q_hat)
DVector : z_hat <: R^(q_hat)
\endverbatim
*/
class ActiveSet {
public:
// /////////////////////
// Public types
/** \brief . */
typedef QPSchurPack::QP QP;
/** \brief . */
typedef MatrixSymAddDelUpdateable MSADU;
// /////////////////////
// Public interface
/** \brief «std comp» members for schur complement matrix S_hat.
*
* Warning: Resetting schur_comp will cause a reinitialization to
* an empty active set.
*/
STANDARD_COMPOSITION_MEMBERS( MatrixSymAddDelUpdateableWithOpNonsingular, schur_comp );
/** \brief Set the tolerances to use when updating the schur complement.
*/
STANDARD_MEMBER_COMPOSITION_MEMBERS( MSADU::PivotTolerances, pivot_tols );
/** \brief . */
ActiveSet(
const schur_comp_ptr_t &schur_comp
,MSADU::PivotTolerances pivot_tols = MSADU::PivotTolerances( 1e-6,1e-8,1e-8 )
);
/** @name Update the active set. */
//@{
/** \brief Initialize with an additional active set.
*
* If the initial schur complement is not full rank
* then an <tt>LDConstraintException</tt> exception will be thrown.
* The active set will contain all of the constraints it
* can such that the schur complement is nonsingular.
*/
void initialize(
QP& qp, size_type num_act_change, const int ij_act_change[]
,const EBounds bnds[], bool test, bool salvage_init_schur_comp
,std::ostream *out, EOutputLevel output_level );
/** \brief Reinitialize the schur complement factorization for the current active set
*
* ToDo: Finish documentation
*/
void refactorize_schur_comp();
/** \brief Add a constraint to the active set then refactorize the schur complemnt
* (if forced).
*
* ToDo: Finish documentation
*
* If the new KKT system is singular then the exeption
* \c MatrixSymAddDelUpdateable::SingularUpdateException will be thrown
* but the old KKT system will be kept intact.
*
* If the reduced Hessian for the new KKT system does not have the
* correct inertia then the exception
* MatrixSymAddDelUpdateable::WrongInertiaUpdateException
* will be thrown but the old KKT system will be kept intact.
*
* @return Returns true if any output was sent to *out.
*/
bool add_constraint(
size_type ja, EBounds bnd_ja, bool update_steps
,std::ostream *out, EOutputLevel output_level
,bool force_refactorization = true
,bool allow_any_cond = false );
/** \brief Drop a constraint from the active set then refactorize the schur
* complement (if forced).
*
* ToDo: Finish documentation
*
* Returns true if any output was sent to *out.
*/
bool drop_constraint(
int jd, std::ostream *out, EOutputLevel output_level
,bool force_refactorization = true, bool allow_any_cond = false );
/** \brief Drop a constraint from, then add a constraint to the active set
* and refactorize the schur complement.
*
* ToDo: Finish documentation
*
* Returns true if any output was sent to *out.
*/
bool drop_add_constraints(
int jd, size_type ja, EBounds bnd_ja, bool update_steps
,std::ostream *out, EOutputLevel output_level );
//@}
/** @name access the QP */
//@{
/** \brief . */
QP& qp();
/** \brief . */
const QP& qp() const;
//@}
/** @name Access the active sets quantities. */
//@{
/** \brief Return the total size of the schur complement.
*
* q_hat = q_plus_hat + q_F_hat + q_C_hat.
*/
size_type q_hat() const;
/** \brief Return the number of constraints from A_bar added
* to the active set.
*/
size_type q_plus_hat() const;
/** \brief Return the number of variables that where
* initially fixed but are currently free or
* fixed to another bound.
*/
size_type q_F_hat() const;
/** \brief Return the number of variables that where
* initially fixed but are currently
* fixed to another bound.
*/
size_type q_C_hat() const;
/** \brief Return the number of variables that where
* initially fixed and are still currently
* fixed to their intial bounds.
*/
size_type q_D_hat() const;
/** \brief Returns -i for row & column of S_bar for an initially
* fixed variable left out of Ko that became free and returns
* j for the constraint a(j)'*x that was added to the active
* set.
*
* <tt>1 <= s <= q_hat</tt>
*/
int ij_map( size_type s ) const;
/** \brief Map from a constraint or initially fixed variable
* to a row and column in the schur complement S_bar.
*
* To determine if an initially fixed varible x(i) is now
* free call s_map(-i). If s_map(-i) returns zero then
* x(i) is still fixed. Otherwise s_map(-i) returns the
* row and column in S_bar for this change in the
* active set.
*
* To determine if a constraint a(j)'*x is part of the
* active set call s_map(j). If s_map(j) returns zero
* then a(j)'*x is not part of the active set.
* Otherwise s_map(j) returns the row and column
* in S_bar for this change in the active set.
*/
size_type s_map( int ij ) const;
/** \brief Returns ||a(j)||2 where j = ij_map(s).
*
* If ij_map(s) < 0, the this function returns zero.
*
* 1 <= s <= q_hat
*/
value_type constr_norm( size_type s ) const;
/** \brief Return which bound is active for the active constraint.
*/
EBounds bnd( size_type s ) const;
/** \brief Returns the indice of x_X(l) of the initially fixed variables
* that are still fixed at their original bounds.
*
* i <= k <= q_D_hat
*/
size_type l_fxfx( size_type k ) const;
/** \brief . */
const U_hat_t& U_hat() const;
/** \brief . */
const MatrixSymOpNonsing& S_hat() const;
/** \brief . */
const GenPermMatrixSlice& P_XF_hat() const;
/** \brief . */
const GenPermMatrixSlice& P_FC_hat() const;
/** \brief . */
const GenPermMatrixSlice& P_plus_hat() const;
/** \brief . */
const GenPermMatrixSlice& Q_XD_hat() const;
/** \brief . */
const DVectorSlice d_hat() const;
/** \brief . */
DVectorSlice z_hat();
/** \brief . */
const DVectorSlice z_hat() const;
/** \brief . */
DVectorSlice p_z_hat();
/** \brief . */
const DVectorSlice p_z_hat() const;
/** \brief . */
DVectorSlice mu_D_hat();
/** \brief . */
const DVectorSlice mu_D_hat() const;
/** \brief . */
DVectorSlice p_mu_D_hat();
/** \brief . */
const DVectorSlice p_mu_D_hat() const;
/** \brief Determine if a constriant was an initially fixed variable.
*
* This function will return true if:
*
* j <= n && x_init(j) != FREE
*
* This is just a function of convienience
*
*/
bool is_init_fixed( size_type j ) const;
/// Returns true if all the degrees of freedom of the QP are used up
bool all_dof_used_up() const;
//@}
private:
// ///////////////////////////
// Private types
/** \brief . */
typedef std::vector<int> ij_map_t;
/** \brief . */
typedef std::map<int,size_type> s_map_t;
/** \brief . */
typedef std::vector<EBounds> bnds_t;
/** \brief . */
typedef std::vector<int> l_fxfx_t;
/** \brief . */
typedef std::vector<size_type> P_row_t;
/** \brief . */
typedef std::vector<size_type> P_col_t;
// ///////////////////////////
// Private data members
bool initialized_;
bool test_;
QP* qp_; // QP being solved.
const QP::x_init_t *x_init_;
size_type n_;
size_type n_R_;
size_type m_;
size_type m_breve_;
size_type q_plus_hat_;
size_type q_F_hat_;
size_type q_C_hat_;
ij_map_t ij_map_;
// s_map_t s_map_;
DVector constr_norm_;
bnds_t bnds_;
l_fxfx_t l_fxfx_;
U_hat_t U_hat_;
//
// for s = 1...q_hat
//
// / e(i) if i > 0 (where: i = -ij_map(s))
// [P_XF_hat](:,s) = |
// \ 0 otherwise
//
GenPermMatrixSlice P_XF_hat_; // \hat{P}^{XF} \in \Re^{n \times \hat{q}}
P_row_t P_XF_hat_row_; // i
P_row_t P_XF_hat_col_; // s
//
// for s = 1...q_hat
//
// / e(sd) if 0 < j <= n && is_init_fixed(j)
// | (where: j = ij_map(s), sd = s_map(-j))
// [P_FC_hat](:,s) = |
// \ 0 otherwise
//
GenPermMatrixSlice P_FC_hat_; // {\tilde{P}^{F}}^{T} \hat{P}^{C} \in \Re^{\hat{q} \times \hat{q}}
P_row_t P_FC_hat_row_; // sd
P_row_t P_FC_hat_col_; // s
//
// for s = 1...q_hat
//
// / e(j) if j > 0 && !is_init_fixed(j) (where: j = ij_map(s))
// [P_plus_hat](:,s) = |
// \ 0 otherwise
//
GenPermMatrixSlice P_plus_hat_; // \hat{P}^{(+)} \in \Re^{n+\breve{m} \times \hat{q}^{D}}
P_row_t P_plus_hat_row_; // j
P_row_t P_plus_hat_col_; // s
//
// for k = 1...q_D_hat
//
// [Q_XD_hat](:,k) = e(i) (where is_init_fixed(i) && s_map(-i) == 0)
//
GenPermMatrixSlice Q_XD_hat_; // \hat{Q}^{XD} \in \Re^{n_X \times \hat{q}^{D}}
P_row_t Q_XD_hat_row_; // i
P_row_t Q_XD_hat_col_; // k
//
DVector d_hat_; // \hat{d}
DVector z_hat_; // \hat{z}
DVector p_z_hat_;
DVector mu_D_hat_; // \hat{\mu}^{D}
DVector p_mu_D_hat_; // p^{\hat{\mu}^{D}}
// ///////////////////////////
// Private member functions
//
void assert_initialized() const;
// Assert in range.
void assert_s( size_type s) const;
// Reinitialize P_XF_hat, P_plus_hat, Q_XD_hat, and U_hat
void reinitialize_matrices(bool test);
// Remove an element from the augmented KKT system.
// This does not update P_plus_hat, P_XF_hat or any
// of the dimensions. Returns true if *out was
// written to.
bool remove_augmented_element(
size_type sd, bool force_refactorization
,MatrixSymAddDelUpdateable::EEigenValType eigen_val_drop
,std::ostream *out, EOutputLevel output_level
,bool allow_any_cond );
// not defined and not to be called.
ActiveSet();
}; // end class ActiveSet
/// Return a reference to the active set object
const ActiveSet& act_set() const;
/// Dump all the active set quantities for debugging
static void dump_act_set_quantities( const ActiveSet& act_set, std::ostream& out
, bool print_S_hat = true );
protected:
// /////////////////////////
// Protected types
/** \brief . */
enum EPDSteps { PICK_VIOLATED_CONSTRAINT, UPDATE_ACTIVE_SET, COMPUTE_SEARCH_DIRECTION
, COMPUTE_STEP_LENGTHS, TAKE_STEP };
// ///////////////////////////
// Protected Member functions
/** \brief Run the algorithm from a dual feasible point.
*
* By default, the algorithm should start with
* first_step = PICK_VIOLATED_CONSTRAINT if we are starting
* with a dual feasible point.
*/
virtual
ESolveReturn qp_algo(
EPDSteps first_step
,std::ostream *out, EOutputLevel output_level, ERunTests test_what
,const DVectorSlice& vo, ActiveSet* act_set, DVectorSlice* v
,DVectorSlice* x, size_type* iter, size_type* num_adds, size_type* num_drops
,size_type* iter_refine_num_resid, size_type* iter_refine_num_solves
,StopWatchPack::stopwatch* timer
);
/** \brief Set the values in x for all the variables.
*/
virtual void set_x( const ActiveSet& act_set, const DVectorSlice& v, DVectorSlice* x );
/// Map from the active set to the sparse multipliers for the inequality constraints
virtual void set_multipliers(
const ActiveSet& act_set, const DVectorSlice& v
,SpVector* mu, DVectorSlice* lambda, SpVector* lambda_breve );
/// Determine if time has run out and if we should return.
bool timeout_return( StopWatchPack::stopwatch*timer, std::ostream *out, EOutputLevel output_level ) const;
/** \brief . */
enum EIterRefineReturn {
ITER_REFINE_NOT_PERFORMED // Did not even perform it (iter_refine_max_iter == 0)
,ITER_REFINE_ONE_STEP // Only performed one step and the status is not known.
,ITER_REFINE_NOT_NEEDED // Convergence tolerance was already satisfied
,ITER_REFINE_IMPROVED // Did not converge but it was improved
,ITER_REFINE_NOT_IMPROVED // Tried iterative refinement but no improvement
,ITER_REFINE_CONVERGED // Performed iterative refinement and converged!
};
/** \brief Perform iterative refinement on the augmented KKT system for the current active set.
\verbatim
[ Ko U_hat ] [ v ] + [ ao * bo ]
[ U_hat' V_hat ] [ z ] [ aa * ba ]
\endverbatim
* Returns \c true if iterative refinement satisfied the convergence criteria.
*/
EIterRefineReturn iter_refine(
const ActiveSet &act_set
,std::ostream *out
,EOutputLevel output_level
,const value_type ao // Only used if bo != NULL
,const DVectorSlice *bo // If NULL then assumed to be zero!
,const value_type aa // Only used if q_hat > 0
,const DVectorSlice *ba // If NULL then assumed to be zero! Not accessed if q_hat > 0
,DVectorSlice *v
,DVectorSlice *z // Can be NULL if q_hat > 0
,size_type *iter_refine_num_resid
,size_type *iter_refine_num_solves
);
private:
// /////////////////////////
// Private data members
ActiveSet act_set_; // The active set.
}; // end class QPSchur
} // end namespace ConstrainedOptPack
#endif // QPSCHUR_H
|