/usr/include/trilinos/BelosTFQMRIter.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 | // @HEADER
// ***********************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
//
// This file contains an implementation of the TFQMR iteration
// for solving non-Hermitian linear systems of equations Ax = b,
// where b is a single-std::vector and x is the corresponding solution.
//
// The implementation is a slight modification on the TFQMR iteration
// found in Saad's "Iterative Methods for Sparse Linear Systems".
//
#ifndef BELOS_TFQMR_ITER_HPP
#define BELOS_TFQMR_ITER_HPP
/*!
\file BelosTFQMRIter.hpp
\brief Belos concrete class for generating iterations with the
preconditioned tranpose-free QMR (TFQMR) method.
*/
#include "BelosConfigDefs.hpp"
#include "BelosIteration.hpp"
#include "BelosTypes.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
/*! \class Belos::TFQMRIter
\brief This class implements the preconditioned transpose-free QMR algorithm for
solving non-Hermitian linear systems of equations Ax = b, where b is the right-hand
side std::vector and x is the corresponding solution.
\ingroup belos_solver_framework
\author Heidi Thornquist
*/
namespace Belos {
/** \brief Structure to contain pointers to TFQMRIter state variables.
*
* This struct is utilized by TFQMRIter::initialize() and TRQMRIter::getState().
*/
template <class ScalarType, class MV>
struct TFQMRIterState {
/*! \brief The current residual basis. */
Teuchos::RCP<const MV> R;
Teuchos::RCP<const MV> W;
Teuchos::RCP<const MV> U;
Teuchos::RCP<const MV> Rtilde;
Teuchos::RCP<const MV> D;
Teuchos::RCP<const MV> V;
TFQMRIterState() : R(Teuchos::null), W(Teuchos::null), U(Teuchos::null),
Rtilde(Teuchos::null), D(Teuchos::null), V(Teuchos::null)
{}
};
//! @name TFQMRIter Exceptions
//@{
/** \brief TFQMRIterInitFailure is thrown when the TFQMRIter object is unable to
* generate an initial iterate in the TFQMRIter::initialize() routine.
*
* This std::exception is thrown from the TFQMRIter::initialize() method, which is
* called by the user or from the TFQMRIter::iterate() method if isInitialized()
* == \c false.
*
* In the case that this std::exception is thrown,
* TFQMRIter::isInitialized() will be \c false and the user will need to provide
* a new initial iterate to the iteration.
*/
class TFQMRIterInitFailure : public BelosError {public:
TFQMRIterInitFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief TFQMRIterateFailure is thrown when the TFQMRIter object is unable to
* compute the next iterate in the TFQMRIter::iterate() routine.
*
* This std::exception is thrown from the TFQMRIter::iterate() method.
*
*/
class TFQMRIterateFailure : public BelosError {public:
TFQMRIterateFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
//@}
template <class ScalarType, class MV, class OP>
class TFQMRIter : public Iteration<ScalarType,MV,OP> {
public:
//
// Convenience typedefs
//
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
//! @name Constructor/Destructor.
//@{
//! %Belos::TFQMRIter constructor.
TFQMRIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
Teuchos::ParameterList ¶ms );
//! %Belos::TFQMRIter destructor.
virtual ~TFQMRIter() {};
//@}
//! @name Solver methods
//@{
/*! \brief This method performs block TFQMR iterations until the status
* test indicates the need to stop or an error occurs (in which case, an
* std::exception is thrown).
*
* iterate() will first determine whether the solver is inintialized; if
* not, it will call initialize() using default arguments. After
* initialization, the solver performs block TFQMR iterations until the
* status test evaluates as ::Passed, at which point the method returns to
* the caller.
*
* The block TFQMR iteration proceeds as follows:
* -# The operator problem->applyOp() is applied to the newest \c blockSize vectors in the Krylov basis.
* -# The resulting vectors are orthogonalized against the previous basis vectors, and made orthonormal.
* -# The Hessenberg matrix is updated.
* -# The least squares system is updated.
*
* The status test is queried at the beginning of the iteration.
*
* Possible exceptions thrown include the TFQMRIterOrthoFailure.
*
*/
void iterate();
/*! \brief Initialize the solver to an iterate, providing a complete state.
*
* The %BlockTFQMRIter contains a certain amount of state, consisting of the current
* Krylov basis and the associated Hessenberg matrix.
*
* initialize() gives the user the opportunity to manually set these,
* although this must be done with caution, abiding by the rules given
* below. All notions of orthogonality and orthonormality are derived from
* the inner product specified by the orthogonalization manager.
*
* \post
* <li>isInitialized() == \c true (see post-conditions of isInitialize())
*
* The user has the option of specifying any component of the state using
* initialize(). However, these arguments are assumed to match the
* post-conditions specified under isInitialized(). Any necessary component of the
* state not given to initialize() will be generated.
*
* \note For any pointer in \c newstate which directly points to the multivectors in
* the solver, the data is not copied.
*/
void initializeTFQMR(TFQMRIterState<ScalarType,MV> newstate);
/*! \brief Initialize the solver with the initial vectors from the linear problem
* or random data.
*/
void initialize()
{
TFQMRIterState<ScalarType,MV> empty;
initializeTFQMR(empty);
}
/*! \brief Get the current state of the linear solver.
*
* The data is only valid if isInitialized() == \c true.
*
* \returns A TFQMRIterState object containing const pointers to the current
* solver state.
*/
TFQMRIterState<ScalarType,MV> getState() const {
TFQMRIterState<ScalarType,MV> state;
state.R = R_;
state.W = W_;
state.U = U_;
state.Rtilde = Rtilde_;
state.D = D_;
state.V = V_;
return state;
}
//@}
//! @name Status methods
//@{
//! \brief Get the current iteration count.
int getNumIters() const { return iter_; }
//! \brief Reset the iteration count.
void resetNumIters( int iter = 0 ) { iter_ = iter; }
//! Get the norms of the residuals native to the solver.
//! \return A std::vector of length blockSize containing the native residuals.
Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const;
//! Get the current update to the linear system.
/*! \note This method returns a null pointer because the linear problem is updated every iteration.
*/
Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }
//@}
//! @name Accessor methods
//@{
//! Get a constant reference to the linear problem.
const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
//! Get the blocksize to be used by the iterative solver in solving this linear problem.
int getBlockSize() const { return 1; }
//! \brief Set the blocksize.
void setBlockSize(int blockSize) {
TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,
"Belos::TFQMRIter::setBlockSize(): Cannot use a block size that is not one.");
}
//! States whether the solver has been initialized or not.
bool isInitialized() { return initialized_; }
//@}
private:
//
// Internal methods
//
//! Method for initalizing the state storage needed by TFQMR.
void setStateSize();
//
// Classes inputed through constructor that define the linear problem to be solved.
//
const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > lp_;
const Teuchos::RCP<OutputManager<ScalarType> > om_;
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > stest_;
//
// Algorithmic parameters
//
// Storage for QR factorization of the least squares system.
Teuchos::SerialDenseMatrix<int,ScalarType> alpha_, rho_, rho_old_;
std::vector<MagnitudeType> tau_, cs_, theta_;
//
// Current solver state
//
// initialized_ specifies that the basis vectors have been initialized and the iterate() routine
// is capable of running; _initialize is controlled by the initialize() member method
// For the implications of the state of initialized_, please see documentation for initialize()
bool initialized_;
// stateStorageInitialized_ specifies that the state storage has be initialized to the current
// blockSize_ and numBlocks_. This initialization may be postponed if the linear problem was
// generated without the right-hand side or solution vectors.
bool stateStorageInitialized_;
// Current subspace dimension, and number of iterations performed.
int iter_;
//
// State Storage
//
Teuchos::RCP<MV> R_;
Teuchos::RCP<MV> W_;
Teuchos::RCP<MV> U_, AU_;
Teuchos::RCP<MV> Rtilde_;
Teuchos::RCP<MV> D_;
Teuchos::RCP<MV> V_;
};
//
// Implementation
//
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor.
template <class ScalarType, class MV, class OP>
TFQMRIter<ScalarType,MV,OP>::TFQMRIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
Teuchos::ParameterList ¶ms
) :
lp_(problem),
om_(printer),
stest_(tester),
alpha_(1,1),
rho_(1,1),
rho_old_(1,1),
tau_(1),
cs_(1),
theta_(1),
initialized_(false),
stateStorageInitialized_(false),
iter_(0)
{
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute native residual from TFQMR recurrence.
template <class ScalarType, class MV, class OP>
Teuchos::RCP<const MV>
TFQMRIter<ScalarType,MV,OP>::getNativeResiduals( std::vector<MagnitudeType> *normvec ) const
{
MagnitudeType one = Teuchos::ScalarTraits<MagnitudeType>::one();
if (normvec)
(*normvec)[0] = Teuchos::ScalarTraits<MagnitudeType>::squareroot( iter_ + one )*tau_[0];
return Teuchos::null;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Setup the state storage.
template <class ScalarType, class MV, class OP>
void TFQMRIter<ScalarType,MV,OP>::setStateSize ()
{
if (!stateStorageInitialized_) {
// Check if there is any multivector to clone from.
Teuchos::RCP<const MV> lhsMV = lp_->getLHS();
Teuchos::RCP<const MV> rhsMV = lp_->getRHS();
if (lhsMV == Teuchos::null && rhsMV == Teuchos::null) {
stateStorageInitialized_ = false;
return;
}
else {
// Initialize the state storage
// If the subspace has not be initialized before, generate it using the LHS or RHS from lp_.
if (R_ == Teuchos::null) {
// Get the multivector that is not null.
Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::invalid_argument,
"Belos::TFQMRIter::setStateSize(): linear problem does not specify multivectors to clone from.");
R_ = MVT::Clone( *tmp, 1 );
AU_ = MVT::Clone( *tmp, 1 );
D_ = MVT::Clone( *tmp, 1 );
V_ = MVT::Clone( *tmp, 1 );
}
// State storage has now been initialized.
stateStorageInitialized_ = true;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Initialize this iteration object
template <class ScalarType, class MV, class OP>
void TFQMRIter<ScalarType,MV,OP>::initializeTFQMR(TFQMRIterState<ScalarType,MV> newstate)
{
// Initialize the state storage if it isn't already.
if (!stateStorageInitialized_)
setStateSize();
TEST_FOR_EXCEPTION(!stateStorageInitialized_,std::invalid_argument,
"Belos::TFQMRIter::initialize(): Cannot initialize state storage!");
// NOTE: In TFQMRIter R_, the initial residual, is required!!!
//
std::string errstr("Belos::TFQMRIter::initialize(): Specified multivectors must have a consistent length and width.");
// Create convenience variables for zero and one.
const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
const ScalarType STzero = Teuchos::ScalarTraits<ScalarType>::zero();
const MagnitudeType MTzero = Teuchos::ScalarTraits<MagnitudeType>::zero();
if (newstate.R != Teuchos::null) {
TEST_FOR_EXCEPTION( MVT::GetVecLength(*newstate.R) != MVT::GetVecLength(*R_),
std::invalid_argument, errstr );
TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.R) != 1,
std::invalid_argument, errstr );
// Copy basis vectors from newstate into V
if (newstate.R != R_) {
// copy over the initial residual (unpreconditioned).
MVT::MvAddMv( one, *newstate.R, STzero, *newstate.R, *R_ );
}
// Compute initial vectors
// Initially, they are set to the preconditioned residuals
//
W_ = MVT::CloneCopy( *R_ );
U_ = MVT::CloneCopy( *R_ );
Rtilde_ = MVT::CloneCopy( *R_ );
MVT::MvInit( *D_ );
// Multiply the current residual by Op and store in V_
// V_ = Op * R_
//
lp_->apply( *U_, *V_ );
AU_ = MVT::CloneCopy( *V_ );
//
// Compute initial scalars: theta, eta, tau, rho_old
//
theta_[0] = MTzero;
MVT::MvNorm( *R_, tau_ ); // tau = ||r_0||
MVT::MvTransMv( one, *Rtilde_, *R_, rho_old_ ); // rho = (r_0, r_tilde)
}
else {
TEST_FOR_EXCEPTION(newstate.R == Teuchos::null,std::invalid_argument,
"Belos::TFQMRIter::initialize(): TFQMRIterState does not have initial residual.");
}
// The solver is initialized
initialized_ = true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Iterate until the status test informs us we should stop.
template <class ScalarType, class MV, class OP>
void TFQMRIter<ScalarType,MV,OP>::iterate()
{
//
// Allocate/initialize data structures
//
if (initialized_ == false) {
initialize();
}
// Create convenience variables for zero and one.
const ScalarType STone = Teuchos::ScalarTraits<ScalarType>::one();
const MagnitudeType MTone = Teuchos::ScalarTraits<MagnitudeType>::one();
const ScalarType STzero = Teuchos::ScalarTraits<ScalarType>::zero();
ScalarType eta = STzero, beta = STzero;
//
// Start executable statements.
//
// Get the current solution vector.
Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();
// Check that the current solution vector only has one column.
TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*cur_soln_vec) != 1, TFQMRIterateFailure,
"Belos::TFQMRIter::iterate(): current linear system has more than one vector!" );
////////////////////////////////////////////////////////////////
// Iterate until the status test tells us to stop.
//
while (stest_->checkStatus(this) != Passed) {
//
//--------------------------------------------------------
// Compute the new alpha if we need to
//--------------------------------------------------------
//
if (iter_%2 == 0) {
MVT::MvTransMv( STone, *V_, *Rtilde_, alpha_ ); // alpha = rho / (v, r_tilde)
alpha_(0,0) = rho_old_(0,0)/alpha_(0,0);
}
//
//--------------------------------------------------------
// Update w.
// w = w - alpha*Au
//--------------------------------------------------------
//
MVT::MvAddMv( STone, *W_, -alpha_(0,0), *AU_, *W_ );
//
//--------------------------------------------------------
// Update d.
// d = u + (theta^2/alpha)eta*d
//--------------------------------------------------------
//
MVT::MvAddMv( STone, *U_, (theta_[0]*theta_[0]/alpha_(0,0))*eta, *D_, *D_ );
//
//--------------------------------------------------------
// Update u if we need to.
// u = u - alpha*v
//
// Note: This is usually computed with alpha (above), but we're trying be memory efficient.
//--------------------------------------------------------
//
if (iter_%2 == 0) {
// Compute new U.
MVT::MvAddMv( STone, *U_, -alpha_(0,0), *V_, *U_ );
// Update Au for the next iteration.
lp_->apply( *U_, *AU_ );
}
//
//--------------------------------------------------------
// Compute the new theta, c, eta, tau; i.e. the update to the least squares solution.
//--------------------------------------------------------
//
MVT::MvNorm( *W_, theta_ ); // theta = ||w|| / tau
theta_[0] /= tau_[0];
cs_[0] = MTone / SCT::squareroot(STone + theta_[0]*theta_[0]); // cs = 1.0 / sqrt(1.0 + theta^2)
tau_[0] *= theta_[0]*cs_[0]; // tau = tau * theta * cs
eta = cs_[0]*cs_[0]*alpha_(0,0); // eta = cs^2 * alpha
//
//--------------------------------------------------------
// Update the solution.
//--------------------------------------------------------
//
lp_->updateSolution( D_, true, eta );
//
if (iter_%2) {
//
//--------------------------------------------------------
// Compute the new rho, beta if we need to.
//--------------------------------------------------------
//
MVT::MvTransMv( STone, *W_, *Rtilde_, rho_ ); // rho = ( w, r_tilde )
beta = rho_(0,0)/rho_old_(0,0); // beta = rho / rho_old
rho_old_(0,0) = rho_(0,0); // rho_old = rho
//
//--------------------------------------------------------
// Update u, v, and Au if we need to.
// Note: We are updating v in two stages to be memory efficient
//--------------------------------------------------------
//
MVT::MvAddMv( STone, *W_, beta, *U_, *U_ ); // u = w + beta*u
// First stage of v update.
MVT::MvAddMv( STone, *AU_, beta, *V_, *V_ ); // v = Au + beta*v
// Update Au.
lp_->apply( *U_, *AU_ ); // Au = A*u
// Second stage of v update.
MVT::MvAddMv( STone, *AU_, beta, *V_, *V_ ); // v = Au + beta*v
}
// Increment the iteration
iter_++;
} // end while (sTest_->checkStatus(this) != Passed)
}
} // namespace Belos
//
#endif // BELOS_TFQMR_ITER_HPP
//
// End of file BelosTFQMRIter.hpp
|