/usr/include/trilinos/BelosPCPGSolMgr.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 | // @HEADER
// ***********************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef BELOS_PCPG_SOLMGR_HPP
#define BELOS_PCPG_SOLMGR_HPP
/*! \file BelosPCPGSolMgr.hpp
* \brief The Belos::PCPGSolMgr provides a solver manager for the PCPG linear solver.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"
#include "BelosPCPGIter.hpp"
#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_TimeMonitor.hpp"
//#include <vector> //getPermThatSorts
//#include <algorithm> //getPermThatSorts
/** \example epetra/example/PCPG/PCPGEpetraExFile.cpp
uses Belos::PCPGSolMgr and a ML preconditioner.
*/
/*! \class Belos::PCPGSolMgr
*
* \brief The Belos::PCPGSolMgr manages the PCPG linear solver. Three Hypotheses:
* First users must ensure that for each linear system has the same coefficient matrix!
* Second the seed space is invariant during an individual linear system solve.
* Third, due to finite precision arithmetic, the off-diaognal "P'AP" terms grow.
\ingroup belos_solver_framework
\author David Day
*/
namespace Belos {
//! @name PCPGSolMgr Exceptions
//@{
/** \brief PCPGSolMgrLinearProblemFailure is thrown when the linear problem is
* not setup (i.e. setProblem() was not called) when solve() is called.
*
* This exception is thrown from the PCPGSolMgr::solve() method.
*
*/
class PCPGSolMgrLinearProblemFailure : public BelosError {public:
PCPGSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief PCPGSolMgrOrthoFailure is thrown when the orthogonalization manager is
* unable to generate orthonormal columns from the initial basis vectors.
* This exception is thrown from the PCPGSolMgr::solve() method.
*
*/
class PCPGSolMgrOrthoFailure : public BelosError {public:
PCPGSolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief PCPGSolMgrLAPACKFailure is thrown when a nonzero value is retuned
* from an LAPACK call.
*
* This exception is thrown from the PCPGSolMgr::solve() method.
*
*/
class PCPGSolMgrLAPACKFailure : public BelosError {public:
PCPGSolMgrLAPACKFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief PCPGSolMgrRecyclingFailure is thrown when any problem occurs in using/creating
* the recycling subspace.
*
* The PCPGSolMgr::solve() method throws the exception.
*
*/
class PCPGSolMgrRecyclingFailure : public BelosError {public:
PCPGSolMgrRecyclingFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
//@}
template<class ScalarType, class MV, class OP>
class PCPGSolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors/Destructor
//@{
/*! \brief Empty constructor for PCPGSolMgr.
* This constructor takes no arguments and sets the default values for the solver.
* The linear problem must be passed in using setProblem() before solve() is called on this object.
* In most instances, LinearProblem setProblem(...) methods are used.
* Solver values may be changed using setParameters().
*/
PCPGSolMgr();
/*! \brief Basic constructor for PCPGSolMgr.
* The constructor accepts a LinearProblem to be solved and a parameter list of these options:
*
* - "Num Deflated Blocks" - a \c int specifying the number of blocks deflated from the linear system. Default: 2
* The parameter distinguishes PCPG from CG.
* - "Num Saved Blocks" - a \c int specifying the maximum number of blocks saved from old Krylov bases. Default: 16
* The parameter distinguishes PCPG from CG.
* - "Block Size" - an \c int specifying the block size to be used by the underlying block
* conjugate-gradient solver. In PCPC block size = one. Many parameters are
* meaningless in the unit block size case. Default: 1
* - "Adaptive Block Size" - a \c bool specifying whether the block size can be modified
* throughout the solve. Default: true
* Meaningless with unit block size
* - "Maximum Iterations" - an \c int specifying the maximum number of iterations the
* underlying solver is allowed to perform. Default: 1000
* - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms
* must reach to decide convergence. Default: 1e-8.
* - "Orthogonalization" - a \c string specifying the desired orthogonalization: DGKS, ICGS, IMGS. Default: "DGKS"
* Meaningless with unit block size
* - "Orthogonalization Constant" - a \c MagnitudeType used by DGKS orthogonalization to
* determine whether another step of classical Gram-Schmidt
* is necessary. Default: -1 (use DGKS default)
* Meaningless with unit block size
* - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
* - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
* - "Output Stream" - a reference-counted pointer to the output stream where all
* solver output is sent. Default: Teuchos::rcp(&std::cout,false)
* - "Output Frequency" - an \c int specifying how often convergence information should be
* outputted. Default: -1 (never)
* - "Show Maximum Residual Norm Only" - a \c bool specifying whether that only the maximum
* relative residual norm is printed if convergence
* information is printed. Default: false
* Meaningless with unit block size
* - "Timer Label" - a \c std::string to use as a prefix for the timer labels. Default: "Belos"
*/
PCPGSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl );
//! Destructor.
virtual ~PCPGSolMgr() {};
//@}
//! @name Accessor methods
//@{
/*! \brief Get current linear problem being solved for in this object.
*/
const LinearProblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
/*! \brief Get a parameter list containing the valid parameters for this object.
*/
Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;
/*! \brief Get a parameter list containing the current parameters for this object.
*/
Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return tuple(timerSolve_);
}
//! Get the iteration count for the most recent call to \c solve().
int getNumIters() const {
return numIters_;
}
/*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve.
*/
bool isLOADetected() const { return false; }
//@}
//! @name Set methods
//@{
//! Set the linear problem that needs to be solved.
void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; }
//! Set the parameters the solver manager should use to solve the linear problem.
void setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms );
//@}
//! @name Reset methods
//@{
/*! \brief Performs a reset of the solver manager specified by the \c ResetType. This informs the
* solver manager that the solver should prepare for the next call to solve by resetting certain elements
* of the iterative solver strategy.
*/
void reset( const ResetType type ) { if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem(); }
//@}
//! @name Solver application methods
//@{
/*! \brief The method either solves the problem or decides to quit. On each call, a (possibly null)
* seed space is used to accelerate convergence.
*
* The method calls PCPGIter::iterate(), which will return either because a specially constructed status
* test evaluates to ::Passed or an exception is thrown. The first Krylov vectors are appended to the
* seed space.
*
* A return from PCPGIter::iterate() signifies one of the following scenarios:
* - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
* will be placed in the linear problem and return ::Unconverged.
* - global convergence has been met. In this case, the current solutions to the linear system will be
* placed in the linear problem and the solver manager will return ::Converged
*
* \returns ::ReturnType specifying:
* - ::Converged: the linear problem was solved to the specification required by the solver manager.
* - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//@}
/** \name Overridden from Teuchos::Describable */
//@{
/** \brief Method to return description of the PCPG solver manager */
std::string description() const;
//@}
private:
// In the A-inner product, perform an RRQR decomposition without using A unless absolutely necessary. Given
// the seed space U and C = A U, find U1 and C1 with span(U1)=span(U) such that C1'U1 = I maintaining C=AU.
int ARRQR(int numVecs, int numOrthVecs, const Teuchos::SerialDenseMatrix<int,ScalarType>& D);
// Linear problem.
Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
// Output manager.
Teuchos::RCP<OutputManager<ScalarType> > printer_;
Teuchos::RCP<std::ostream> outputStream_;
// Status test.
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTest_;
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;
// Orthogonalization manager.
Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;
// Current parameter list.
Teuchos::RCP<ParameterList> params_;
// Default solver values.
static const MagnitudeType convtol_default_;
static const MagnitudeType orthoKappa_default_;
static const int maxIters_default_;
static const int deflatedBlocks_default_;
static const int savedBlocks_default_;
static const int verbosity_default_;
static const int outputStyle_default_;
static const int outputFreq_default_;
static const std::string label_default_;
static const std::string orthoType_default_;
static const Teuchos::RCP<std::ostream> outputStream_default_;
// Current solver values.
MagnitudeType convtol_, orthoKappa_;
int numIters_, maxIters_, deflatedBlocks_, savedBlocks_, verbosity_, outputStyle_, outputFreq_;
std::string orthoType_;
// Recycled subspace, its image and the residual
Teuchos::RCP<MV> U_, C_, R_;
// Actual dimension of current recycling subspace (<= savedBlocks_ )
int dimU_;
// Timers.
std::string label_;
Teuchos::RCP<Teuchos::Time> timerSolve_;
// Internal state variables.
bool isSet_;
};
// Default solver values.
template<class ScalarType, class MV, class OP>
const typename PCPGSolMgr<ScalarType,MV,OP>::MagnitudeType PCPGSolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;
template<class ScalarType, class MV, class OP>
const typename PCPGSolMgr<ScalarType,MV,OP>::MagnitudeType PCPGSolMgr<ScalarType,MV,OP>::orthoKappa_default_ = -1.0;
template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;
template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::deflatedBlocks_default_ = 2;
template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::savedBlocks_default_ = 16;
template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;
template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;
template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;
template<class ScalarType, class MV, class OP>
const std::string PCPGSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";
template<class ScalarType, class MV, class OP>
const std::string PCPGSolMgr<ScalarType,MV,OP>::orthoType_default_ = "DGKS";
template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> PCPGSolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);
// Empty Constructor
template<class ScalarType, class MV, class OP>
PCPGSolMgr<ScalarType,MV,OP>::PCPGSolMgr() :
outputStream_(outputStream_default_),
convtol_(convtol_default_),
orthoKappa_(orthoKappa_default_),
maxIters_(maxIters_default_),
deflatedBlocks_(deflatedBlocks_default_),
savedBlocks_(savedBlocks_default_),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
orthoType_(orthoType_default_),
label_(label_default_),
isSet_(false)
{}
// Basic Constructor
template<class ScalarType, class MV, class OP>
PCPGSolMgr<ScalarType,MV,OP>::PCPGSolMgr(
const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl ) :
problem_(problem),
outputStream_(outputStream_default_),
convtol_(convtol_default_),
orthoKappa_(orthoKappa_default_),
maxIters_(maxIters_default_),
deflatedBlocks_(deflatedBlocks_default_),
savedBlocks_(savedBlocks_default_),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
orthoType_(orthoType_default_),
label_(label_default_),
isSet_(false)
{
TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
if (!is_null(pl)) {
// Set the parameters using the list that was passed in.
setParameters( pl );
}
}
template<class ScalarType, class MV, class OP>
void PCPGSolMgr<ScalarType,MV,OP>::setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms )
{
// Create the internal parameter list if ones doesn't already exist.
if (params_ == Teuchos::null) {
params_ = Teuchos::rcp( new Teuchos::ParameterList(*getValidParameters()) );
}
else {
params->validateParameters(*getValidParameters());
}
// Check for maximum number of iterations
if (params->isParameter("Maximum Iterations")) {
maxIters_ = params->get("Maximum Iterations",maxIters_default_);
// Update parameter in our list and in status test.
params_->set("Maximum Iterations", maxIters_);
if (maxIterTest_!=Teuchos::null)
maxIterTest_->setMaxIters( maxIters_ );
}
// Check for the maximum numbers of saved and deflated blocks.
if (params->isParameter("Num Saved Blocks")) {
savedBlocks_ = params->get("Num Saved Blocks",savedBlocks_default_);
TEST_FOR_EXCEPTION(savedBlocks_ <= 0, std::invalid_argument,
"Belos::PCPGSolMgr: \"Num Saved Blocks\" must be strictly positive.");
// savedBlocks > number of matrix rows and columns, not known in parameters.
//TEST_FOR_EXCEPTION(savedBlocks_ >= maxIters_, std::invalid_argument,
//"Belos::PCPGSolMgr: \"Num Saved Blocks\" must be less than \"Maximum Iterations\".");
// Update parameter in our list.
params_->set("Num Saved Blocks", savedBlocks_);
}
if (params->isParameter("Num Deflated Blocks")) {
deflatedBlocks_ = params->get("Num Deflated Blocks",deflatedBlocks_default_);
TEST_FOR_EXCEPTION(deflatedBlocks_ < 0, std::invalid_argument,
"Belos::PCPGSolMgr: \"Num Deflated Blocks\" must be positive.");
TEST_FOR_EXCEPTION(deflatedBlocks_ > savedBlocks_, std::invalid_argument,
"Belos::PCPGSolMgr: \"Num Deflated Blocks\" must be <= \"Num Saved Blocks\".");
// Update parameter in our list.
params_->set("Num Deflated Blocks", deflatedBlocks_);
}
// Check to see if the timer label changed.
if (params->isParameter("Timer Label")) {
std::string tempLabel = params->get("Timer Label", label_default_);
// Update parameter in our list and solver timer
if (tempLabel != label_) {
label_ = tempLabel;
params_->set("Timer Label", label_);
std::string solveLabel = label_ + ": PCPGSolMgr total solve time";
timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);
}
}
// Check if the orthogonalization changed.
if (params->isParameter("Orthogonalization")) {
std::string tempOrthoType = params->get("Orthogonalization",orthoType_default_);
TEST_FOR_EXCEPTION( tempOrthoType != "DGKS" && tempOrthoType != "ICGS" && tempOrthoType != "IMGS",
std::invalid_argument,
"Belos::PCPGSolMgr: \"Orthogonalization\" must be either \"DGKS\", \"ICGS\", or \"IMGS\".");
if (tempOrthoType != orthoType_) {
orthoType_ = tempOrthoType;
// Create orthogonalization manager
if (orthoType_=="DGKS") {
if (orthoKappa_ <= 0) {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
}
}
else if (orthoType_=="ICGS") {
ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else if (orthoType_=="IMGS") {
ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
}
}
// Check which orthogonalization constant to use.
if (params->isParameter("Orthogonalization Constant")) {
orthoKappa_ = params->get("Orthogonalization Constant",orthoKappa_default_);
// Update parameter in our list.
params_->set("Orthogonalization Constant",orthoKappa_);
if (orthoType_=="DGKS") {
if (orthoKappa_ > 0 && ortho_ != Teuchos::null) {
Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
}
}
}
// Check for a change in verbosity level
if (params->isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
verbosity_ = params->get("Verbosity", verbosity_default_);
} else {
verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
}
// Update parameter in our list.
params_->set("Verbosity", verbosity_);
if (printer_ != Teuchos::null)
printer_->setVerbosity(verbosity_);
}
// Check for a change in output style
if (params->isParameter("Output Style")) {
if (Teuchos::isParameterType<int>(*params,"Output Style")) {
outputStyle_ = params->get("Output Style", outputStyle_default_);
} else {
outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
}
// Reconstruct the convergence test if the explicit residual test is not being used.
params_->set("Output Style", outputStyle_);
outputTest_ = Teuchos::null;
}
// output stream
if (params->isParameter("Output Stream")) {
outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");
// Update parameter in our list.
params_->set("Output Stream", outputStream_);
if (printer_ != Teuchos::null)
printer_->setOStream( outputStream_ );
}
// frequency level
if (verbosity_ & Belos::StatusTestDetails) {
if (params->isParameter("Output Frequency")) {
outputFreq_ = params->get("Output Frequency", outputFreq_default_);
}
// Update parameter in out list and output status test.
params_->set("Output Frequency", outputFreq_);
if (outputTest_ != Teuchos::null)
outputTest_->setOutputFrequency( outputFreq_ );
}
// Create output manager if we need to.
if (printer_ == Teuchos::null) {
printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
}
// Convergence
typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;
typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP> StatusTestResNorm_t;
// Check for convergence tolerance
if (params->isParameter("Convergence Tolerance")) {
convtol_ = params->get("Convergence Tolerance",convtol_default_);
// Update parameter in our list and residual tests.
params_->set("Convergence Tolerance", convtol_);
if (convTest_ != Teuchos::null)
convTest_->setTolerance( convtol_ );
}
// Create status tests if we need to.
// Basic test checks maximum iterations and native residual.
if (maxIterTest_ == Teuchos::null)
maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );
if (convTest_ == Teuchos::null)
convTest_ = Teuchos::rcp( new StatusTestResNorm_t( convtol_, 1 ) );
sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );
// Create the status test output class.
// This class manages and formats the output from the status test.
StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );
// Set the solver string for the output test
std::string solverDesc = " PCPG ";
outputTest_->setSolverDesc( solverDesc );
// Create orthogonalization manager if we need to.
if (ortho_ == Teuchos::null) {
if (orthoType_=="DGKS") {
if (orthoKappa_ <= 0) {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
}
}
else if (orthoType_=="ICGS") {
ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else if (orthoType_=="IMGS") {
ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else {
TEST_FOR_EXCEPTION(orthoType_!="ICGS"&&orthoType_!="DGKS"&&orthoType_!="IMGS",std::logic_error,
"Belos::PCPGSolMgr(): Invalid orthogonalization type.");
}
}
// Create the timer if we need to.
if (timerSolve_ == Teuchos::null) {
std::string solveLabel = label_ + ": PCPGSolMgr total solve time";
timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);
}
// Inform the solver manager that the current parameters were set.
isSet_ = true;
}
template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
PCPGSolMgr<ScalarType,MV,OP>::getValidParameters() const
{
static Teuchos::RCP<const Teuchos::ParameterList> validPL;
if (is_null(validPL)) {
Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
// Set all the valid parameters and their default values.
pl->set("Convergence Tolerance", convtol_default_,
"The relative residual tolerance that needs to be achieved by the\n"
"iterative solver in order for the linear system to be declared converged.");
pl->set("Maximum Iterations", maxIters_default_,
"The maximum number of iterations allowed for each\n"
"set of RHS solved.");
pl->set("Num Deflated Blocks", deflatedBlocks_default_,
"The maximum number of vectors in the seed subspace." );
pl->set("Num Saved Blocks", savedBlocks_default_,
"The maximum number of vectors saved from old Krylov subspaces." );
pl->set("Verbosity", verbosity_default_,
"What type(s) of solver information should be outputted\n"
"to the output stream.");
pl->set("Output Style", outputStyle_default_,
"What style is used for the solver information outputted\n"
"to the output stream.");
pl->set("Output Frequency", outputFreq_default_,
"How often convergence information should be outputted\n"
"to the output stream.");
pl->set("Output Stream", outputStream_default_,
"A reference-counted pointer to the output stream where all\n"
"solver output is sent.");
pl->set("Timer Label", label_default_,
"The string to use as a prefix for the timer labels.");
// pl->set("Restart Timers", restartTimers_);
pl->set("Orthogonalization", orthoType_default_,
"The type of orthogonalization to use: DGKS, ICGS, IMGS");
pl->set("Orthogonalization Constant",orthoKappa_default_,
"The constant used by DGKS orthogonalization to determine\n"
"whether another step of classical Gram-Schmidt is necessary.");
validPL = pl;
}
return validPL;
}
// solve()
template<class ScalarType, class MV, class OP>
ReturnType PCPGSolMgr<ScalarType,MV,OP>::solve() {
// Set the current parameters if are not set already.
if (!isSet_) { setParameters( params_ ); }
Teuchos::BLAS<int,ScalarType> blas;
Teuchos::LAPACK<int,ScalarType> lapack;
ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
TEST_FOR_EXCEPTION(problem_ == Teuchos::null,PCPGSolMgrLinearProblemFailure,
"Belos::PCPGSolMgr::solve(): Linear problem is not a valid object.");
TEST_FOR_EXCEPTION(!problem_->isProblemSet(),PCPGSolMgrLinearProblemFailure,
"Belos::PCPGSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");
// Create indices for the linear systems to be solved.
int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
std::vector<int> currIdx(1);
currIdx[0] = 0;
bool debug = false;
// Inform the linear problem of the current linear system to solve.
problem_->setLSIndex( currIdx ); // block size == 1
// Assume convergence is achieved, then let any failed convergence set this to false.
bool isConverged = true;
//////////////////////////////////////////////////////////////////////////////////////
// PCPG iteration parameter list
Teuchos::ParameterList plist;
plist.set("Saved Blocks", savedBlocks_);
plist.set("Block Size", 1);
plist.set("Keep Diagonal", true);
plist.set("Initialize Diagonal", true);
//////////////////////////////////////////////////////////////////////////////////////
// PCPG solver
Teuchos::RCP<PCPGIter<ScalarType,MV,OP> > pcpg_iter;
pcpg_iter = Teuchos::rcp( new PCPGIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,ortho_,plist) );
// Number of iterations required to generate initial recycle space (if needed)
// Enter solve() iterations
{
Teuchos::TimeMonitor slvtimer(*timerSolve_);
while ( numRHS2Solve > 0 ) { // test for quick return
// Reset the status test.
outputTest_->reset();
// Create the first block in the current Krylov basis (residual).
if (R_ == Teuchos::null)
R_ = MVT::Clone( *(problem_->getRHS()), 1 );
problem_->computeCurrResVec( &*R_ );
// Hypothesis: if U_ is not null, then neither is C_ and furthermore U'C= I.
// TODO: ensure hypothesis right here ... I have to think about use cases.
if( U_ != Teuchos::null ){
// Hypothesis: if U_ is not null, then neither is C_ and furthermore U'C= I.
// possibly over solved equation ... I want residual norms
// relative to the initial residual, not what I am about to compute.
Teuchos::RCP<MV> cur_soln_vec = problem_->getCurrLHSVec();
std::vector<MagnitudeType> rnorm0(1);
MVT::MvNorm( *R_, rnorm0 ); // rnorm0 = norm(R_);
// Z := U_'*R_; xo += U_*Z ;R_ -= C_*Z
std::cout << "Solver Manager: dimU_ = " << dimU_ << std::endl;
Teuchos::SerialDenseMatrix<int,ScalarType> Z( dimU_, 1 );
Teuchos::RCP<const MV> Uactive, Cactive;
std::vector<int> active_columns( dimU_ );
for (int i=0; i < dimU_; ++i) active_columns[i] = i;
Uactive = MVT::CloneView(*U_, active_columns);
Cactive = MVT::CloneView(*C_, active_columns);
if( debug ){
std::cout << " Solver Manager : check duality of seed basis " << std::endl;
Teuchos::SerialDenseMatrix<int,ScalarType> H( dimU_, dimU_ );
MVT::MvTransMv( one, *Uactive, *Cactive, H );
H.print( std::cout );
}
MVT::MvTransMv( one, *Uactive, *R_, Z );
Teuchos::RCP<MV> tempU = MVT::Clone( *R_, 1 );
MVT::MvTimesMatAddMv( one, *Uactive, Z, zero, *tempU ); // UZ
MVT::MvAddMv( one, *tempU, one, *cur_soln_vec, *cur_soln_vec ); // xo += tmp;
MVT::MvTimesMatAddMv( one, *Cactive, Z, zero, *tempU ); // CZ
MVT::MvAddMv( -one, *tempU, one, *R_, *R_ ); // R_ -= tmp;
std::vector<MagnitudeType> rnorm(1);
MVT::MvNorm( *R_, rnorm );
if( rnorm[0] < rnorm0[0] * .001 ){ //reorthogonalize
MVT::MvTransMv( one, *Uactive, *R_, Z );
MVT::MvTimesMatAddMv( one, *Uactive, Z, zero, *tempU );
MVT::MvAddMv( one, *tempU, one, *cur_soln_vec, *cur_soln_vec ); // xo += UZ;
MVT::MvTimesMatAddMv( one, *Cactive, Z, zero, *tempU );
MVT::MvAddMv( -one, *tempU, one, *R_, *R_ ); // R_ -= CZ;
}
Uactive = Teuchos::null;
Cactive = Teuchos::null;
tempU = Teuchos::null;
}
else {
dimU_ = 0;
}
// Set the new state and initialize the solver.
PCPGIterState<ScalarType,MV> pcpgState; // fails if R == null.
pcpgState.R = R_;
if( U_ != Teuchos::null ) pcpgState.U = U_;
if( C_ != Teuchos::null ) pcpgState.C = C_;
if( dimU_ > 0 ) pcpgState.curDim = dimU_;
pcpg_iter->initialize(pcpgState);
// treat initialize() exceptions here? how to use try-catch-throw? DMD
// Get the current number of deflated blocks with the PCPG iteration
dimU_ = pcpgState.curDim;
if( !dimU_ ) printer_->stream(Debug) << " No recycled subspace available for RHS index " << currIdx[0] << std::endl << std::endl;
pcpg_iter->resetNumIters();
if( dimU_ > savedBlocks_ )
std::cout << "Error: dimU_ = " << dimU_ << " > savedBlocks_ = " << savedBlocks_ << std::endl;
while(1) { // dummy loop for break
// tell pcpg_iter to iterate
try {
if( debug ) printf("********** Calling iterate...\n");
pcpg_iter->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence first
//
////////////////////////////////////////////////////////////////////////////////////
if ( convTest_->getStatus() == Passed ) {
// we have convergence
break; // break from while(1){pcpg_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for maximum iterations
//
////////////////////////////////////////////////////////////////////////////////////
else if ( maxIterTest_->getStatus() == Passed ) {
// we don't have convergence
isConverged = false;
break; // break from while(1){pcpg_iter->iterate()}
}
else {
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// Something is wrong, and it is probably the developers fault.
//
////////////////////////////////////////////////////////////////////////////////////
TEST_FOR_EXCEPTION(true,std::logic_error,
"Belos::PCPGSolMgr::solve(): Invalid return from PCPGIter::iterate().");
} // end if
} // end try
catch (const PCPGIterOrthoFailure &e) {
// Check to see if the most recent solution yielded convergence.
sTest_->checkStatus( &*pcpg_iter );
if (convTest_->getStatus() != Passed)
isConverged = false;
break;
}
catch (const std::exception &e) {
printer_->stream(Errors) << "Error! Caught exception in PCPGIter::iterate() at iteration "
<< pcpg_iter->getNumIters() << std::endl
<< e.what() << std::endl;
throw;
}
} // end of while(1)
// Update the linear problem.
Teuchos::RCP<MV> update = pcpg_iter->getCurrentUpdate();
problem_->updateSolution( update, true );
// Inform the linear problem that we are finished with this block linear system.
problem_->setCurrLS();
// Get the state. How did pcpgState die?
PCPGIterState<ScalarType,MV> oldState = pcpg_iter->getState();
dimU_ = oldState.curDim;
int q = oldState.prevUdim;
std::cout << "SolverManager: dimU_ " << dimU_ << " prevUdim= " << q << std::endl;
if( q > deflatedBlocks_ )
std::cout << "SolverManager: Error deflatedBlocks = " << deflatedBlocks_ << std::endl;
int rank;
if( dimU_ > q ){ // Orthogonalize [U;C](:,prevUdim:dimU_)
//Given the seed space U and C = A U for some symmetric positive definite A,
//find U1 and C1 with span(U1)=span(U) such that C1'U1 = I maintaining C=AU
//oldState.D->print( std::cout ); D = diag( C'*U )
U_ = oldState.U; //MVT::MvPrint( *U_, std::cout );
C_ = oldState.C; //MVT::MvPrint( *C_, std::cout );
rank = ARRQR(dimU_,q, *oldState.D );
if( rank < dimU_ ) {
std::cout << " rank decreased in ARRQR, something to do? " << std::endl;
}
dimU_ = rank;
} // Now U_ and C_ = AU are dual bases.
if( dimU_ > deflatedBlocks_ ){
if( !deflatedBlocks_ ){
U_ = Teuchos::null;
C_ = Teuchos::null;
dimU_ = deflatedBlocks_;
break;
}
bool Harmonic = false; // (Harmonic) Ritz vectors
Teuchos::RCP<MV> Uorth;
std::vector<int> active_cols( dimU_ );
for (int i=0; i < dimU_; ++i) active_cols[i] = i;
if( Harmonic ){
Uorth = MVT::CloneCopy(*C_, active_cols);
}
else{
Uorth = MVT::CloneCopy(*U_, active_cols);
}
// Explicitly construct Q and R factors
Teuchos::SerialDenseMatrix<int,ScalarType> R(dimU_,dimU_);
rank = ortho_->normalize(*Uorth, Teuchos::rcp(&R,false));
Uorth = Teuchos::null;
// TODO: During the previous solve, the matrix that normalizes U(1:q) was computed and discarded.
// One might save it, reuse it here, and just normalize columns U(q+1:dimU_) here.
// throw an error if U is both A-orthonormal and rank deficient
TEST_FOR_EXCEPTION(rank < dimU_,PCPGSolMgrOrthoFailure,
"Belos::PCPGSolMgr::solve(): Failed to compute orthonormal basis for initial recycled subspace.");
// R VT' = Ur S,
Teuchos::SerialDenseMatrix<int,ScalarType> VT; // Not referenced
Teuchos::SerialDenseMatrix<int,ScalarType> Ur; // Not referenced
int lwork = 5*dimU_; // minimal, extra computation < 67*dimU_
int info = 0; // Hermite
int lrwork = 1;
if( problem_->isHermitian() ) lrwork = dimU_;
std::vector<ScalarType> work(lwork); //
std::vector<ScalarType> Svec(dimU_); //
std::vector<ScalarType> rwork(lrwork);
lapack.GESVD('N', 'O',
R.numRows(),R.numCols(),R.values(), R.numRows(),
&Svec[0],
Ur.values(),1,
VT.values(),1, // Output: VT stored in R
&work[0], lwork,
&rwork[0], &info);
TEST_FOR_EXCEPTION(info != 0, PCPGSolMgrLAPACKFailure,
"Belos::PCPGSolMgr::solve(): LAPACK _GESVD failed to compute singular values.");
if( work[0] != 67. * dimU_ )
std::cout << " SVD " << dimU_ << " lwork " << work[0] << std::endl;
for( int i=0; i< dimU_; i++)
std::cout << i << " " << Svec[i] << std::endl;
Teuchos::SerialDenseMatrix<int,ScalarType> wholeV( R, Teuchos::TRANS);
int startRow = 0, startCol = 0;
if( Harmonic )
startCol = dimU_ - deflatedBlocks_;
Teuchos::SerialDenseMatrix<int,ScalarType> V(Teuchos::Copy,
wholeV,
wholeV.numRows(),
deflatedBlocks_,
startRow,
startCol);
std::vector<int> active_columns( dimU_ );
std::vector<int> def_cols( deflatedBlocks_ );
for (int i=0; i < dimU_; ++i) active_columns[i] = i;
for (int i=0; i < deflatedBlocks_; ++i) def_cols[i] = i;
Teuchos::RCP<MV> Uactive = MVT::CloneViewNonConst(*U_, def_cols);
Teuchos::RCP<MV> Ucopy = MVT::CloneCopy( *U_, active_columns );
MVT::MvTimesMatAddMv( one, *Ucopy, V, zero, *Uactive ); // U:= U*V
Ucopy = Teuchos::null;
Uactive = Teuchos::null;
Teuchos::RCP<MV> Cactive = MVT::CloneViewNonConst(*C_, def_cols);
Teuchos::RCP<MV> Ccopy = MVT::CloneCopy( *C_, active_columns );
MVT::MvTimesMatAddMv( one, *Ccopy, V, zero, *Cactive ); // C:= C*V
Ccopy = Teuchos::null;
Cactive = Teuchos::null;
dimU_ = deflatedBlocks_;
}
printer_->stream(Debug) << " Generated recycled subspace using RHS index " << currIdx[0] << " of dimension " << dimU_ << std::endl << std::endl;
// Inform the linear problem that we are finished with this block linear system.
problem_->setCurrLS();
// Update indices for the linear systems to be solved.
numRHS2Solve -= 1;
if ( numRHS2Solve > 0 ) {
currIdx[0]++;
// Set the next indices.
problem_->setLSIndex( currIdx );
}
else {
currIdx.resize( numRHS2Solve );
}
}// while ( numRHS2Solve > 0 )
}
// print final summary
sTest_->print( printer_->stream(FinalSummary) );
// print timing information
Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
// get iteration information for this solve
numIters_ = maxIterTest_->getNumIters();
if (!isConverged) {
return Unconverged; // return from PCPGSolMgr::solve()
}
return Converged; // return from PCPGSolMgr::solve()
}
// A-orthogonalize the Seed Space
// Note that Anasazi::GenOrthoManager provides simplified versions of the algorithm,
// that are not rank revealing, and are not designed for PCPG in other ways too.
template<class ScalarType, class MV, class OP>
int PCPGSolMgr<ScalarType,MV,OP>::ARRQR(int p, int q, const Teuchos::SerialDenseMatrix<int,ScalarType>& D)
{
using Teuchos::RCP;
ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
// Allocate memory for scalars.
Teuchos::SerialDenseMatrix<int,ScalarType> alpha( 1, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> gamma( 1, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> anorm( 1, 1 );
std::vector<int> curind(1);
std::vector<int> ipiv(p - q); // RRQR Pivot indices
std::vector<ScalarType> Pivots(p); // RRQR Pivots
int i, imax, j, k, l;
ScalarType rteps = 1.5e-8;
// Scale such that diag( U'C) = I
for( int i = q ; i < p ; i++ ){
ipiv[i-q] = i;
curind[0] = i;
RCP<MV> P = MVT::CloneViewNonConst(*U_,curind);
RCP<MV> AP = MVT::CloneViewNonConst(*C_,curind);
anorm(0,0) = one / Teuchos::ScalarTraits<ScalarType>::squareroot( D(i-q,i-q) ) ;
MVT::MvAddMv( anorm(0,0), *P, zero, *AP, *P );
MVT::MvAddMv( zero, *P, anorm(0,0), *AP, *AP );
Pivots[i] = one;
}
for( i = q ; i < p ; i++ ){
if( q < i && i < p-1 ){ // Find the largest pivot
imax = i;
l = ipiv[imax-q];
for( j = i+1 ; j < p ; j++ ){
k = ipiv[j-q];
if( Pivots[k] > Pivots[l] ){
imax = j;
l = k;
}
} // end for
if( imax > i ){
l = ipiv[imax-q]; // swap ipiv( imax ) and ipiv(i+1)
ipiv[imax-q] = ipiv[i-q];
ipiv[i-q] = l;
}
} // largest pivot found
int k = ipiv[i-q];
if( Pivots[k] > 1.5625e-2 ){
anorm(0,0) = Pivots[k]; // A-norm of u
}
else{ // anorm(0,0) = sqrt( U(:,k)'*C(:,k) );
curind[0] = k;
RCP<const MV> P = MVT::CloneView(*U_,curind);
RCP<const MV> AP = MVT::CloneView(*C_,curind);
MVT::MvTransMv( one, *P, *AP, anorm );
anorm(0,0) = Teuchos::ScalarTraits<ScalarType>::squareroot( anorm(0,0) ) ;
}
if( rteps <= anorm(0,0) && anorm(0,0) < 9.765625e-4){
/*
C(:,k) = A*U(:,k); % Change C
fixC = U(:, ipiv(1:i-1) )'*C(:,k);
U(:,k) = U(:,k) - U(:, ipiv(1:i-1) )*fixC;
C(:,k) = C(:,k) - C(:, ipiv(1:i-1) )*fixC;
anorm = sqrt( U(:,k)'*C(:,k) );
*/
std::cout << "ARRQR: Bad case not implemented" << std::endl;
}
if( anorm(0,0) < rteps ){ // rank [U;C] = i-1
std::cout << "ARRQR : deficient case not implemented " << std::endl;
//U = U(:, ipiv(1:i-1) );
//C = C(:, ipiv(1:i-1) );
p = q + i;
// update curDim_ in State
break;
}
curind[0] = k;
RCP<MV> P = MVT::CloneViewNonConst(*U_,curind);
RCP<MV> AP = MVT::CloneViewNonConst(*C_,curind);
MVT::MvAddMv( anorm(0,0), *P, zero, *AP, *P ); // U(:,k) = U(:,k)/anorm;
MVT::MvAddMv( zero, *P, anorm(0,0), *AP, *AP ); // C(:,k) = C(:,k)/anorm;
P = Teuchos::null;
AP = Teuchos::null;
Pivots[k] = one; // delete, for diagonostic purposes
P = MVT::CloneViewNonConst(*U_,curind); // U(:,k)
AP = MVT::CloneViewNonConst(*C_,curind); // C(:,k)
for( j = i+1 ; j < p ; j++ ){
l = ipiv[j-q]; // ahhh
curind[0] = l;
RCP<MV> Q = MVT::CloneViewNonConst(*U_,curind); // segmentation fault, j=i+1=5
MVT::MvTransMv( one, *Q, *AP, alpha); // alpha(0,0) = U(:,l)'*C(:,k);
MVT::MvAddMv( -alpha(0,0), *P, one, *Q, *Q ); // U(:,l) -= U(:,k) * alpha(0,0);
Q = Teuchos::null;
RCP<MV> AQ = MVT::CloneViewNonConst(*C_,curind);
MVT::MvAddMv( -alpha(0,0), *AP, one, *AQ, *AQ ); // C(:,l) -= C(:,l) - C(:,k) * alpha(0,0);
AQ = Teuchos::null;
gamma(0,0) = ( Pivots[l] - alpha(0,0))*( Pivots[l] + alpha(0,0));
if( gamma(0,0) > 0){
Pivots[l] = Teuchos::ScalarTraits<ScalarType>::squareroot( gamma(0,0) );
}
else {
Pivots[l] = zero; //rank deficiency revealed
}
}
}
return p;
}
// The method returns a string describing the solver manager.
template<class ScalarType, class MV, class OP>
std::string PCPGSolMgr<ScalarType,MV,OP>::description() const
{
std::ostringstream oss;
oss << "Belos::PCPGSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";
oss << "{";
oss << "Ortho Type='"<<orthoType_;
oss << "}";
return oss.str();
}
} // end Belos namespace
#endif /* BELOS_PCPG_SOLMGR_HPP */
|