This file is indexed.

/usr/include/trilinos/BelosPCPGSolMgr.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
// @HEADER
// ***********************************************************************
//
//                 Belos: Block Linear Solvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef BELOS_PCPG_SOLMGR_HPP
#define BELOS_PCPG_SOLMGR_HPP

/*! \file BelosPCPGSolMgr.hpp
 *  \brief The Belos::PCPGSolMgr provides a solver manager for the PCPG linear solver.
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"

#include "BelosPCPGIter.hpp"

#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_TimeMonitor.hpp"

//#include <vector>              //getPermThatSorts
//#include <algorithm>           //getPermThatSorts


/** \example epetra/example/PCPG/PCPGEpetraExFile.cpp
    uses Belos::PCPGSolMgr and a ML preconditioner.
*/

/*! \class Belos::PCPGSolMgr
 *
 *  \brief The Belos::PCPGSolMgr manages the PCPG linear solver.  Three Hypotheses:
 * First users must ensure that for each linear system has the same coefficient matrix!
 * Second the seed space is invariant during an individual linear system solve.
 * Third, due to finite precision arithmetic, the off-diaognal "P'AP" terms grow.

 \ingroup belos_solver_framework

 \author David Day
 */

namespace Belos {
  
  //! @name PCPGSolMgr Exceptions
  //@{
  
  /** \brief PCPGSolMgrLinearProblemFailure is thrown when the linear problem is
   * not setup (i.e. setProblem() was not called) when solve() is called.
   *
   * This exception is thrown from the PCPGSolMgr::solve() method.
   *
   */
  class PCPGSolMgrLinearProblemFailure : public BelosError {public:
    PCPGSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  /** \brief PCPGSolMgrOrthoFailure is thrown when the orthogonalization manager is
   * unable to generate orthonormal columns from the initial basis vectors.
   * This exception is thrown from the PCPGSolMgr::solve() method.
   *
   */
  class PCPGSolMgrOrthoFailure : public BelosError {public:
    PCPGSolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  /** \brief PCPGSolMgrLAPACKFailure is thrown when a nonzero value is retuned
   * from an LAPACK call.
   *
   * This exception is thrown from the PCPGSolMgr::solve() method.
   *
   */
  class PCPGSolMgrLAPACKFailure : public BelosError {public:
    PCPGSolMgrLAPACKFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  /** \brief PCPGSolMgrRecyclingFailure is thrown when any problem occurs in using/creating
   * the recycling subspace.
   *
   * The PCPGSolMgr::solve() method throws the exception.
   *
   */
  class PCPGSolMgrRecyclingFailure : public BelosError {public:
    PCPGSolMgrRecyclingFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  //@}


  template<class ScalarType, class MV, class OP>
  class PCPGSolMgr : public SolverManager<ScalarType,MV,OP> {
    
  private:
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MT;
    
  public:
    
    //! @name Constructors/Destructor
    //@{ 
   
    /*! \brief Empty constructor for PCPGSolMgr.
     * This constructor takes no arguments and sets the default values for the solver.
     * The linear problem must be passed in using setProblem() before solve() is called on this object.
     * In most instances, LinearProblem setProblem(...) methods are used. 
     * Solver values may be changed using setParameters().
     */
     PCPGSolMgr();
 
    /*! \brief Basic constructor for PCPGSolMgr.
     * The constructor accepts a LinearProblem to be solved and a parameter list of these options:
     *
     *   - "Num Deflated Blocks" - a \c int specifying the number of blocks deflated from the linear system. Default: 2
     *                     The parameter distinguishes PCPG from CG.  
     *   - "Num Saved Blocks" - a \c int specifying the maximum number of blocks saved from old Krylov bases. Default: 16
     *                     The parameter distinguishes PCPG from CG.  
     *   - "Block Size" - an \c int specifying the block size to be used by the underlying block
     *                    conjugate-gradient solver.  In PCPC block size = one.  Many parameters are 
     *                    meaningless in the unit block size case.  Default: 1
     *   - "Adaptive Block Size" - a \c bool specifying whether the block size can be modified
     *                             throughout the solve. Default: true
     *                             Meaningless with unit block size 
     *   - "Maximum Iterations" - an \c int specifying the maximum number of iterations the
     *                            underlying solver is allowed to perform. Default: 1000
     *   - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms
     *                               must reach to decide convergence. Default: 1e-8.
     *   - "Orthogonalization" - a \c string specifying the desired orthogonalization:  DGKS, ICGS, IMGS. Default: "DGKS"
     *                           Meaningless with unit block size 
     *   - "Orthogonalization Constant" - a \c MagnitudeType used by DGKS orthogonalization to
     *                                    determine whether another step of classical Gram-Schmidt
     *                                    is necessary.  Default: -1 (use DGKS default)
     *                                    Meaningless with unit block size 
     *   - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
     *   - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
     *   - "Output Stream" - a reference-counted pointer to the output stream where all
     *                       solver output is sent.  Default: Teuchos::rcp(&std::cout,false)
     *   - "Output Frequency" - an \c int specifying how often convergence information should be
     *                          outputted.  Default: -1 (never)
     *   - "Show Maximum Residual Norm Only" - a \c bool specifying whether that only the maximum
     *                                         relative residual norm is printed if convergence
     *                                         information is printed. Default: false
     *                                         Meaningless with unit block size 
     *   - "Timer Label" - a \c std::string to use as a prefix for the timer labels.  Default: "Belos"
     */
    PCPGSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
		      const Teuchos::RCP<Teuchos::ParameterList> &pl );
    
    //! Destructor.
    virtual ~PCPGSolMgr() {};
    //@}
    
    //! @name Accessor methods
    //@{ 
    
    /*! \brief Get current linear problem being solved for in this object.
     */
    const LinearProblem<ScalarType,MV,OP>& getProblem() const {
      return *problem_;
    }

    /*! \brief Get a parameter list containing the valid parameters for this object.
     */
    Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

    /*! \brief Get a parameter list containing the current parameters for this object.
     */
    Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }
 
    /*! \brief Return the timers for this object. 
     *
     * The timers are ordered as follows:
     *   - time spent in solve() routine
     */
    Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
      return tuple(timerSolve_);
    }

    //! Get the iteration count for the most recent call to \c solve().
    int getNumIters() const {
      return numIters_;
    }
 
    /*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve.
     */
    bool isLOADetected() const { return false; }
 
    //@}
    
    //! @name Set methods
    //@{
   
    //! Set the linear problem that needs to be solved. 
    void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; }
   
    //! Set the parameters the solver manager should use to solve the linear problem. 
    void setParameters( const Teuchos::RCP<Teuchos::ParameterList> &params );
    
    //@}
   
    //! @name Reset methods
    //@{
    /*! \brief Performs a reset of the solver manager specified by the \c ResetType.  This informs the
     *  solver manager that the solver should prepare for the next call to solve by resetting certain elements
     *  of the iterative solver strategy.
     */
    void reset( const ResetType type ) { if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem(); }
    //@}
 
    //! @name Solver application methods
    //@{ 
    
    /*! \brief The method either solves the problem or decides to quit.  On each call, a (possibly null) 
     * seed space is used to accelerate convergence.
     * 
     * The method calls PCPGIter::iterate(), which will return either because a specially constructed status
     * test evaluates to ::Passed or an exception is thrown.  The first Krylov vectors are appended to the
     * seed space. 
     *
     * A return from PCPGIter::iterate() signifies one of the following scenarios:
     *    - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
     *      will be placed in the linear problem and return ::Unconverged.
     *    - global convergence has been met. In this case, the current solutions to the linear system will be
     *      placed in the linear problem and the solver manager will return ::Converged
     *
     * \returns ::ReturnType specifying:
     *     - ::Converged: the linear problem was solved to the specification required by the solver manager.
     *     - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
     */
    ReturnType solve();
    
    //@}
    
    /** \name Overridden from Teuchos::Describable */
    //@{
    
    /** \brief Method to return description of the PCPG solver manager */
    std::string description() const;
    
    //@}
    
  private:

    // In the A-inner product, perform an RRQR decomposition without using A unless absolutely necessary.  Given 
    // the seed space U and C = A U, find U1 and C1 with span(U1)=span(U) such that C1'U1 = I maintaining C=AU.
    int ARRQR(int numVecs, int numOrthVecs, const Teuchos::SerialDenseMatrix<int,ScalarType>& D);

    // Linear problem.
    Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
    
    // Output manager.
    Teuchos::RCP<OutputManager<ScalarType> > printer_;
    Teuchos::RCP<std::ostream> outputStream_;

    // Status test.
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
    Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
    Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTest_;
    Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;

    // Orthogonalization manager.
    Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_; 
    
    // Current parameter list.
    Teuchos::RCP<ParameterList> params_;

    // Default solver values.
    static const MagnitudeType convtol_default_;
    static const MagnitudeType orthoKappa_default_;
    static const int maxIters_default_;
    static const int deflatedBlocks_default_;
    static const int savedBlocks_default_;
    static const int verbosity_default_;
    static const int outputStyle_default_;
    static const int outputFreq_default_;
    static const std::string label_default_;
    static const std::string orthoType_default_;
    static const Teuchos::RCP<std::ostream> outputStream_default_;

    // Current solver values.
    MagnitudeType convtol_, orthoKappa_;
    int numIters_, maxIters_, deflatedBlocks_, savedBlocks_, verbosity_, outputStyle_, outputFreq_;
    std::string orthoType_; 

    // Recycled subspace, its image and the residual
    Teuchos::RCP<MV> U_, C_, R_;

    // Actual dimension of current recycling subspace (<= savedBlocks_ )
    int dimU_; 

    // Timers.
    std::string label_;
    Teuchos::RCP<Teuchos::Time> timerSolve_;

    // Internal state variables.
    bool isSet_;
  };


// Default solver values.
template<class ScalarType, class MV, class OP>
const typename PCPGSolMgr<ScalarType,MV,OP>::MagnitudeType PCPGSolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;

template<class ScalarType, class MV, class OP>
const typename PCPGSolMgr<ScalarType,MV,OP>::MagnitudeType PCPGSolMgr<ScalarType,MV,OP>::orthoKappa_default_ = -1.0;

template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;

template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::deflatedBlocks_default_ = 2;

template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::savedBlocks_default_ = 16;

template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;

template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;

template<class ScalarType, class MV, class OP>
const int PCPGSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;

template<class ScalarType, class MV, class OP>
const std::string PCPGSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";

template<class ScalarType, class MV, class OP>
const std::string PCPGSolMgr<ScalarType,MV,OP>::orthoType_default_ = "DGKS";

template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> PCPGSolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);


// Empty Constructor
template<class ScalarType, class MV, class OP>
PCPGSolMgr<ScalarType,MV,OP>::PCPGSolMgr() :
  outputStream_(outputStream_default_),
  convtol_(convtol_default_),
  orthoKappa_(orthoKappa_default_),
  maxIters_(maxIters_default_),
  deflatedBlocks_(deflatedBlocks_default_),
  savedBlocks_(savedBlocks_default_),
  verbosity_(verbosity_default_),
  outputStyle_(outputStyle_default_),
  outputFreq_(outputFreq_default_),
  orthoType_(orthoType_default_),
  label_(label_default_),
  isSet_(false)
{}


// Basic Constructor
template<class ScalarType, class MV, class OP>
PCPGSolMgr<ScalarType,MV,OP>::PCPGSolMgr( 
					     const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
					     const Teuchos::RCP<Teuchos::ParameterList> &pl ) : 
  problem_(problem),
  outputStream_(outputStream_default_),
  convtol_(convtol_default_),
  orthoKappa_(orthoKappa_default_),
  maxIters_(maxIters_default_),
  deflatedBlocks_(deflatedBlocks_default_),
  savedBlocks_(savedBlocks_default_),
  verbosity_(verbosity_default_),
  outputStyle_(outputStyle_default_),
  outputFreq_(outputFreq_default_),
  orthoType_(orthoType_default_),
  label_(label_default_),
  isSet_(false)
{
  TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");

  if (!is_null(pl)) {
    // Set the parameters using the list that was passed in.
    setParameters( pl );  
  }
}


template<class ScalarType, class MV, class OP>
void PCPGSolMgr<ScalarType,MV,OP>::setParameters( const Teuchos::RCP<Teuchos::ParameterList> &params )
{
  // Create the internal parameter list if ones doesn't already exist.
  if (params_ == Teuchos::null) {
    params_ = Teuchos::rcp( new Teuchos::ParameterList(*getValidParameters()) );
  }
  else {
    params->validateParameters(*getValidParameters());
  }

  // Check for maximum number of iterations
  if (params->isParameter("Maximum Iterations")) {
    maxIters_ = params->get("Maximum Iterations",maxIters_default_);

    // Update parameter in our list and in status test.
    params_->set("Maximum Iterations", maxIters_);
    if (maxIterTest_!=Teuchos::null)
      maxIterTest_->setMaxIters( maxIters_ );
  }

  // Check for the maximum numbers of saved and deflated blocks.
  if (params->isParameter("Num Saved Blocks")) {
    savedBlocks_ = params->get("Num Saved Blocks",savedBlocks_default_);
    TEST_FOR_EXCEPTION(savedBlocks_ <= 0, std::invalid_argument,
		       "Belos::PCPGSolMgr: \"Num Saved Blocks\" must be strictly positive.");

    // savedBlocks > number of matrix rows and columns, not known in parameters.
    //TEST_FOR_EXCEPTION(savedBlocks_ >= maxIters_, std::invalid_argument,
    //"Belos::PCPGSolMgr: \"Num Saved Blocks\" must be less than \"Maximum Iterations\".");

    // Update parameter in our list.
    params_->set("Num Saved Blocks", savedBlocks_);
  }
  if (params->isParameter("Num Deflated Blocks")) {
    deflatedBlocks_ = params->get("Num Deflated Blocks",deflatedBlocks_default_);
    TEST_FOR_EXCEPTION(deflatedBlocks_ < 0, std::invalid_argument,
		       "Belos::PCPGSolMgr: \"Num Deflated Blocks\" must be positive.");

    TEST_FOR_EXCEPTION(deflatedBlocks_ > savedBlocks_, std::invalid_argument,
		       "Belos::PCPGSolMgr: \"Num Deflated Blocks\" must be <= \"Num Saved Blocks\".");

    // Update parameter in our list.
    params_->set("Num Deflated Blocks", deflatedBlocks_);
  }

  // Check to see if the timer label changed.
  if (params->isParameter("Timer Label")) {
    std::string tempLabel = params->get("Timer Label", label_default_);

    // Update parameter in our list and solver timer
    if (tempLabel != label_) {
      label_ = tempLabel;
      params_->set("Timer Label", label_);
      std::string solveLabel = label_ + ": PCPGSolMgr total solve time";
      timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);
    }
  }

  // Check if the orthogonalization changed.
  if (params->isParameter("Orthogonalization")) {
    std::string tempOrthoType = params->get("Orthogonalization",orthoType_default_);
    TEST_FOR_EXCEPTION( tempOrthoType != "DGKS" && tempOrthoType != "ICGS" && tempOrthoType != "IMGS", 
			std::invalid_argument,
			"Belos::PCPGSolMgr: \"Orthogonalization\" must be either \"DGKS\", \"ICGS\", or \"IMGS\".");
    if (tempOrthoType != orthoType_) {
      orthoType_ = tempOrthoType;
      // Create orthogonalization manager
      if (orthoType_=="DGKS") {
	if (orthoKappa_ <= 0) {
	  ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
	}
	else {
	  ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
	  Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
	}
      }
      else if (orthoType_=="ICGS") {
	ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
      } 
      else if (orthoType_=="IMGS") {
	ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
      } 
    }  
  }

  // Check which orthogonalization constant to use.
  if (params->isParameter("Orthogonalization Constant")) {
    orthoKappa_ = params->get("Orthogonalization Constant",orthoKappa_default_);

    // Update parameter in our list.
    params_->set("Orthogonalization Constant",orthoKappa_);
    if (orthoType_=="DGKS") {
      if (orthoKappa_ > 0 && ortho_ != Teuchos::null) {
	Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
      }
    } 
  }

  // Check for a change in verbosity level
  if (params->isParameter("Verbosity")) {
    if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
      verbosity_ = params->get("Verbosity", verbosity_default_);
    } else {
      verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
    }

    // Update parameter in our list.
    params_->set("Verbosity", verbosity_);
    if (printer_ != Teuchos::null)
      printer_->setVerbosity(verbosity_);
  }

  // Check for a change in output style
  if (params->isParameter("Output Style")) {
    if (Teuchos::isParameterType<int>(*params,"Output Style")) {
      outputStyle_ = params->get("Output Style", outputStyle_default_);
    } else {
      outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
    }

    // Reconstruct the convergence test if the explicit residual test is not being used.
    params_->set("Output Style", outputStyle_);
    outputTest_ = Teuchos::null;
  }

  // output stream
  if (params->isParameter("Output Stream")) {
    outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");

    // Update parameter in our list.
    params_->set("Output Stream", outputStream_);
    if (printer_ != Teuchos::null)
      printer_->setOStream( outputStream_ );
  }

  // frequency level
  if (verbosity_ & Belos::StatusTestDetails) {
    if (params->isParameter("Output Frequency")) {
      outputFreq_ = params->get("Output Frequency", outputFreq_default_);
    }

    // Update parameter in out list and output status test.
    params_->set("Output Frequency", outputFreq_);
    if (outputTest_ != Teuchos::null)
      outputTest_->setOutputFrequency( outputFreq_ );
  }

  // Create output manager if we need to.
  if (printer_ == Teuchos::null) {
    printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
  }  
  
  // Convergence
  typedef Belos::StatusTestCombo<ScalarType,MV,OP>  StatusTestCombo_t;
  typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP>  StatusTestResNorm_t;

  // Check for convergence tolerance
  if (params->isParameter("Convergence Tolerance")) {
    convtol_ = params->get("Convergence Tolerance",convtol_default_);

    // Update parameter in our list and residual tests.
    params_->set("Convergence Tolerance", convtol_);
    if (convTest_ != Teuchos::null)
      convTest_->setTolerance( convtol_ );
  }

  // Create status tests if we need to.

  // Basic test checks maximum iterations and native residual.
  if (maxIterTest_ == Teuchos::null)
    maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );

  if (convTest_ == Teuchos::null)
    convTest_ = Teuchos::rcp( new StatusTestResNorm_t( convtol_, 1 ) );

  sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );
  
  // Create the status test output class.
  // This class manages and formats the output from the status test.
  StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
  outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );

  // Set the solver string for the output test
  std::string solverDesc = " PCPG ";
  outputTest_->setSolverDesc( solverDesc );


  // Create orthogonalization manager if we need to.
  if (ortho_ == Teuchos::null) {
    if (orthoType_=="DGKS") {
      if (orthoKappa_ <= 0) {
	ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
      }
      else {
	ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
	Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
      }
    }
    else if (orthoType_=="ICGS") {
      ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
    } 
    else if (orthoType_=="IMGS") {
      ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
    } 
    else {
      TEST_FOR_EXCEPTION(orthoType_!="ICGS"&&orthoType_!="DGKS"&&orthoType_!="IMGS",std::logic_error,
			 "Belos::PCPGSolMgr(): Invalid orthogonalization type.");
    }  
  }

  // Create the timer if we need to.
  if (timerSolve_ == Teuchos::null) {
    std::string solveLabel = label_ + ": PCPGSolMgr total solve time";
    timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);
  }

  // Inform the solver manager that the current parameters were set.
  isSet_ = true;
}

    
template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
PCPGSolMgr<ScalarType,MV,OP>::getValidParameters() const
{
  static Teuchos::RCP<const Teuchos::ParameterList> validPL;
  if (is_null(validPL)) {
    Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
    // Set all the valid parameters and their default values.
    pl->set("Convergence Tolerance", convtol_default_,
      "The relative residual tolerance that needs to be achieved by the\n"
      "iterative solver in order for the linear system to be declared converged.");
    pl->set("Maximum Iterations", maxIters_default_,
      "The maximum number of iterations allowed for each\n"
      "set of RHS solved.");
    pl->set("Num Deflated Blocks", deflatedBlocks_default_,
      "The maximum number of vectors in the seed subspace." );
    pl->set("Num Saved Blocks", savedBlocks_default_,
      "The maximum number of vectors saved from old Krylov subspaces." );
    pl->set("Verbosity", verbosity_default_,
      "What type(s) of solver information should be outputted\n"
      "to the output stream.");
    pl->set("Output Style", outputStyle_default_,
      "What style is used for the solver information outputted\n"
      "to the output stream.");
    pl->set("Output Frequency", outputFreq_default_,
      "How often convergence information should be outputted\n"
      "to the output stream.");  
    pl->set("Output Stream", outputStream_default_,
      "A reference-counted pointer to the output stream where all\n"
      "solver output is sent.");
    pl->set("Timer Label", label_default_,
      "The string to use as a prefix for the timer labels.");
    //  pl->set("Restart Timers", restartTimers_);
    pl->set("Orthogonalization", orthoType_default_,
      "The type of orthogonalization to use: DGKS, ICGS, IMGS");
    pl->set("Orthogonalization Constant",orthoKappa_default_,
      "The constant used by DGKS orthogonalization to determine\n"
      "whether another step of classical Gram-Schmidt is necessary.");
    validPL = pl;
  }
  return validPL;
}

  
// solve()
template<class ScalarType, class MV, class OP>
ReturnType PCPGSolMgr<ScalarType,MV,OP>::solve() {

  // Set the current parameters if are not set already.
  if (!isSet_) { setParameters( params_ ); }

  Teuchos::BLAS<int,ScalarType> blas;
  Teuchos::LAPACK<int,ScalarType> lapack;
  ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
  ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
  
  TEST_FOR_EXCEPTION(problem_ == Teuchos::null,PCPGSolMgrLinearProblemFailure,
                     "Belos::PCPGSolMgr::solve(): Linear problem is not a valid object.");

  TEST_FOR_EXCEPTION(!problem_->isProblemSet(),PCPGSolMgrLinearProblemFailure,
                     "Belos::PCPGSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");

  // Create indices for the linear systems to be solved.
  int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
  std::vector<int> currIdx(1);
  currIdx[0] = 0;

   bool debug = false;

  // Inform the linear problem of the current linear system to solve.
  problem_->setLSIndex( currIdx ); // block size == 1

  // Assume convergence is achieved, then let any failed convergence set this to false.
  bool isConverged = true;	

  //////////////////////////////////////////////////////////////////////////////////////
  // PCPG iteration parameter list
  Teuchos::ParameterList plist;
  plist.set("Saved Blocks", savedBlocks_);
  plist.set("Block Size", 1);
  plist.set("Keep Diagonal", true);
  plist.set("Initialize Diagonal", true);
  
  //////////////////////////////////////////////////////////////////////////////////////
  // PCPG solver
  
  Teuchos::RCP<PCPGIter<ScalarType,MV,OP> > pcpg_iter;
  pcpg_iter = Teuchos::rcp( new PCPGIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,ortho_,plist) );
  // Number of iterations required to generate initial recycle space (if needed)

  // Enter solve() iterations
  {
    Teuchos::TimeMonitor slvtimer(*timerSolve_);
    while ( numRHS2Solve > 0 ) {  // test for quick return
      
      // Reset the status test.
      outputTest_->reset();

      // Create the first block in the current Krylov basis (residual).
      if (R_ == Teuchos::null)
        R_ = MVT::Clone( *(problem_->getRHS()), 1 ); 

      problem_->computeCurrResVec( &*R_ );

      
      // Hypothesis: if U_ is not null, then neither is C_ and furthermore U'C= I.
      // TODO: ensure hypothesis right here ... I have to think about use cases.

      if( U_ != Teuchos::null ){
        // Hypothesis: if U_ is not null, then neither is C_ and furthermore U'C= I.

        // possibly over solved equation ...  I want residual norms
        // relative to the initial residual, not what I am about to compute.
        Teuchos::RCP<MV> cur_soln_vec = problem_->getCurrLHSVec();
        std::vector<MagnitudeType> rnorm0(1);
        MVT::MvNorm( *R_, rnorm0 ); // rnorm0  = norm(R_);

        // Z := U_'*R_; xo += U_*Z ;R_ -= C_*Z
        std::cout  << "Solver Manager:  dimU_ = " << dimU_ << std::endl;
        Teuchos::SerialDenseMatrix<int,ScalarType> Z( dimU_, 1 );

        Teuchos::RCP<const MV> Uactive, Cactive;
        std::vector<int> active_columns( dimU_ );
        for (int i=0; i < dimU_; ++i) active_columns[i] = i;
        Uactive = MVT::CloneView(*U_, active_columns);
        Cactive = MVT::CloneView(*C_, active_columns);

        if( debug ){
          std::cout << " Solver Manager : check duality of seed basis " << std::endl;
          Teuchos::SerialDenseMatrix<int,ScalarType> H( dimU_, dimU_ );
          MVT::MvTransMv( one, *Uactive, *Cactive, H );
          H.print( std::cout );
        }
        
        MVT::MvTransMv( one, *Uactive, *R_, Z );
        Teuchos::RCP<MV> tempU = MVT::Clone( *R_, 1 );
        MVT::MvTimesMatAddMv( one, *Uactive, Z, zero, *tempU );  // UZ
        MVT::MvAddMv( one, *tempU, one, *cur_soln_vec, *cur_soln_vec );  // xo += tmp;
        MVT::MvTimesMatAddMv( one, *Cactive, Z, zero, *tempU );  // CZ
        MVT::MvAddMv( -one, *tempU, one, *R_, *R_ );  // R_ -= tmp;
        std::vector<MagnitudeType> rnorm(1);
        MVT::MvNorm( *R_, rnorm );
        if( rnorm[0] < rnorm0[0] * .001 ){  //reorthogonalize
          MVT::MvTransMv( one, *Uactive, *R_, Z );
          MVT::MvTimesMatAddMv( one, *Uactive, Z, zero, *tempU );
          MVT::MvAddMv( one, *tempU, one, *cur_soln_vec, *cur_soln_vec );  // xo += UZ;
          MVT::MvTimesMatAddMv( one, *Cactive, Z, zero, *tempU );
          MVT::MvAddMv( -one, *tempU, one, *R_, *R_ );  // R_ -= CZ;
        }
        Uactive = Teuchos::null;
        Cactive = Teuchos::null;
        tempU = Teuchos::null;
      }
      else { 
        dimU_ = 0;
      }


      // Set the new state and initialize the solver.
      PCPGIterState<ScalarType,MV> pcpgState; // fails if R == null.

      pcpgState.R = R_;
      if( U_ != Teuchos::null ) pcpgState.U = U_;
      if( C_ != Teuchos::null ) pcpgState.C = C_;
      if( dimU_ > 0 ) pcpgState.curDim = dimU_;
      pcpg_iter->initialize(pcpgState);

      // treat initialize() exceptions here?  how to use try-catch-throw? DMD

      // Get the current number of deflated blocks with the PCPG iteration
      dimU_ = pcpgState.curDim;
      if( !dimU_ ) printer_->stream(Debug) << " No recycled subspace available for RHS index " << currIdx[0] << std::endl << std::endl;
      pcpg_iter->resetNumIters();

      if( dimU_ > savedBlocks_ )
        std::cout << "Error: dimU_  = " << dimU_ << " > savedBlocks_ = " << savedBlocks_ << std::endl; 

      while(1) { // dummy loop for break

        // tell pcpg_iter to iterate
        try {
          if( debug ) printf("********** Calling iterate...\n");
          pcpg_iter->iterate();

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check convergence first
          //
          ////////////////////////////////////////////////////////////////////////////////////
          if ( convTest_->getStatus() == Passed ) {
            // we have convergence
            break;  // break from while(1){pcpg_iter->iterate()}
          }
          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check for maximum iterations
          //
          ////////////////////////////////////////////////////////////////////////////////////
          else if ( maxIterTest_->getStatus() == Passed ) {
            // we don't have convergence
            isConverged = false;
            break;  // break from while(1){pcpg_iter->iterate()}
          }
          else {

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // we returned from iterate(), but none of our status tests Passed.
          // Something is wrong, and it is probably the developers fault.
          //
          ////////////////////////////////////////////////////////////////////////////////////

            TEST_FOR_EXCEPTION(true,std::logic_error,
                               "Belos::PCPGSolMgr::solve(): Invalid return from PCPGIter::iterate().");
          } // end if
        } // end try
        catch (const PCPGIterOrthoFailure &e) {

          // Check to see if the most recent solution yielded convergence.
          sTest_->checkStatus( &*pcpg_iter );
          if (convTest_->getStatus() != Passed)
            isConverged = false;
          break;
        }
        catch (const std::exception &e) {
          printer_->stream(Errors) << "Error! Caught exception in PCPGIter::iterate() at iteration "
                                   << pcpg_iter->getNumIters() << std::endl
                                   << e.what() << std::endl;
          throw;
        }
      } // end of while(1)

      // Update the linear problem.
      Teuchos::RCP<MV> update = pcpg_iter->getCurrentUpdate();
      problem_->updateSolution( update, true );

      // Inform the linear problem that we are finished with this block linear system.
      problem_->setCurrLS();

      // Get the state.   How did pcpgState die?
      PCPGIterState<ScalarType,MV> oldState = pcpg_iter->getState();

      dimU_ = oldState.curDim;
      int q = oldState.prevUdim;

      std::cout << "SolverManager: dimU_ " << dimU_ << "   prevUdim= " << q << std::endl;

      if( q > deflatedBlocks_ ) 
        std::cout << "SolverManager: Error deflatedBlocks = " << deflatedBlocks_ << std::endl;

      int rank; 
      if( dimU_ > q ){ // Orthogonalize [U;C](:,prevUdim:dimU_)
        //Given the seed space U and C = A U for some symmetric positive definite A,
        //find U1 and C1 with span(U1)=span(U) such that C1'U1 = I maintaining C=AU

        //oldState.D->print( std::cout ); D = diag( C'*U )

        U_ = oldState.U; //MVT::MvPrint( *U_, std::cout ); 
        C_ = oldState.C; //MVT::MvPrint( *C_, std::cout ); 
        rank = ARRQR(dimU_,q, *oldState.D );
        if( rank < dimU_ ) {
                std::cout << " rank decreased in ARRQR, something to do? " << std::endl;
        }  
        dimU_ = rank;

      } // Now U_ and C_ = AU are dual bases.

      if( dimU_ > deflatedBlocks_ ){

        if( !deflatedBlocks_ ){
           U_ = Teuchos::null;
           C_ = Teuchos::null;
           dimU_ = deflatedBlocks_;
           break;
        }

        bool Harmonic = false; // (Harmonic) Ritz vectors
     
        Teuchos::RCP<MV> Uorth;

        std::vector<int> active_cols( dimU_ ); 
        for (int i=0; i < dimU_; ++i) active_cols[i] = i;

        if( Harmonic ){
          Uorth = MVT::CloneCopy(*C_, active_cols); 
        }
        else{
          Uorth = MVT::CloneCopy(*U_, active_cols); 
        }

        // Explicitly construct Q and R factors 
        Teuchos::SerialDenseMatrix<int,ScalarType> R(dimU_,dimU_);
        rank = ortho_->normalize(*Uorth, Teuchos::rcp(&R,false));
        Uorth = Teuchos::null;
        // TODO:  During the previous solve, the matrix that normalizes U(1:q) was computed and discarded.  
        // One might save it, reuse it here, and just normalize columns U(q+1:dimU_) here.

        // throw an error if U is both A-orthonormal and rank deficient
        TEST_FOR_EXCEPTION(rank < dimU_,PCPGSolMgrOrthoFailure,
                           "Belos::PCPGSolMgr::solve(): Failed to compute orthonormal basis for initial recycled subspace.");


        // R VT' = Ur S,   
        Teuchos::SerialDenseMatrix<int,ScalarType> VT; // Not referenced
        Teuchos::SerialDenseMatrix<int,ScalarType> Ur; // Not referenced
        int lwork = 5*dimU_;                           // minimal, extra computation < 67*dimU_
        int info = 0;  // Hermite
        int lrwork = 1;
        if( problem_->isHermitian() ) lrwork = dimU_;
        std::vector<ScalarType> work(lwork); // 
        std::vector<ScalarType> Svec(dimU_); // 
        std::vector<ScalarType> rwork(lrwork); 
        lapack.GESVD('N', 'O',
                   R.numRows(),R.numCols(),R.values(), R.numRows(),
                   &Svec[0],
                   Ur.values(),1,
                   VT.values(),1, // Output: VT stored in R
                   &work[0], lwork,
                   &rwork[0], &info);

        TEST_FOR_EXCEPTION(info != 0, PCPGSolMgrLAPACKFailure,
			     "Belos::PCPGSolMgr::solve(): LAPACK _GESVD failed to compute singular values.");

        if( work[0] !=  67. * dimU_ )
           std::cout << " SVD " << dimU_ <<  " lwork " << work[0]  << std::endl;
        for( int i=0; i< dimU_; i++)
           std::cout << i << " " << Svec[i] << std::endl;
           
        Teuchos::SerialDenseMatrix<int,ScalarType> wholeV( R, Teuchos::TRANS);

        int startRow = 0, startCol = 0;
        if( Harmonic )
          startCol = dimU_ - deflatedBlocks_;

        Teuchos::SerialDenseMatrix<int,ScalarType> V(Teuchos::Copy,
                                                     wholeV,
                                                     wholeV.numRows(),
                                                     deflatedBlocks_,
		                                     startRow,
		                                     startCol);
        std::vector<int> active_columns( dimU_ );
        std::vector<int> def_cols( deflatedBlocks_ );
        for (int i=0; i < dimU_; ++i) active_columns[i] = i;
        for (int i=0; i < deflatedBlocks_; ++i) def_cols[i] = i;

        Teuchos::RCP<MV> Uactive = MVT::CloneViewNonConst(*U_, def_cols);
        Teuchos::RCP<MV> Ucopy = MVT::CloneCopy( *U_, active_columns );
        MVT::MvTimesMatAddMv( one, *Ucopy, V, zero, *Uactive ); //  U:= U*V
        Ucopy   = Teuchos::null;
        Uactive = Teuchos::null;
        Teuchos::RCP<MV> Cactive = MVT::CloneViewNonConst(*C_, def_cols);
        Teuchos::RCP<MV> Ccopy = MVT::CloneCopy( *C_, active_columns );
        MVT::MvTimesMatAddMv( one, *Ccopy, V, zero, *Cactive ); //  C:= C*V
        Ccopy  = Teuchos::null;
        Cactive = Teuchos::null;
        dimU_ = deflatedBlocks_;
      }
      printer_->stream(Debug) << " Generated recycled subspace using RHS index " << currIdx[0] << " of dimension " << dimU_ << std::endl << std::endl;

      // Inform the linear problem that we are finished with this block linear system.
      problem_->setCurrLS();

      // Update indices for the linear systems to be solved.
      numRHS2Solve -= 1;
      if ( numRHS2Solve > 0 ) {
	currIdx[0]++;

        // Set the next indices.
        problem_->setLSIndex( currIdx );
      }
      else {
        currIdx.resize( numRHS2Solve );
      }
    }// while ( numRHS2Solve > 0 )
  }
    
  // print final summary
  sTest_->print( printer_->stream(FinalSummary) );
  
  // print timing information
  Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );

  // get iteration information for this solve
  numIters_ = maxIterTest_->getNumIters();
 
  if (!isConverged) {
    return Unconverged; // return from PCPGSolMgr::solve() 
  }
  return Converged; // return from PCPGSolMgr::solve() 
}

// A-orthogonalize the Seed Space
// Note that Anasazi::GenOrthoManager provides simplified versions of the algorithm,
// that are not rank revealing, and are not designed for PCPG in other ways too.
template<class ScalarType, class MV, class OP>
int PCPGSolMgr<ScalarType,MV,OP>::ARRQR(int p, int q, const Teuchos::SerialDenseMatrix<int,ScalarType>& D)
{
  using Teuchos::RCP;
  ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
  ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

  // Allocate memory for scalars.
  Teuchos::SerialDenseMatrix<int,ScalarType> alpha( 1, 1 );
  Teuchos::SerialDenseMatrix<int,ScalarType> gamma( 1, 1 );
  Teuchos::SerialDenseMatrix<int,ScalarType> anorm( 1, 1 );
  std::vector<int> curind(1);
  std::vector<int> ipiv(p - q); // RRQR Pivot indices
  std::vector<ScalarType> Pivots(p); // RRQR Pivots
  int i, imax, j, k, l;
  ScalarType rteps = 1.5e-8;

  // Scale such that diag( U'C) = I
  for( int i = q ; i < p ; i++ ){
    ipiv[i-q] = i;
    curind[0] = i;
    RCP<MV> P = MVT::CloneViewNonConst(*U_,curind);
    RCP<MV> AP = MVT::CloneViewNonConst(*C_,curind);
    anorm(0,0) = one / Teuchos::ScalarTraits<ScalarType>::squareroot( D(i-q,i-q) ) ;
    MVT::MvAddMv( anorm(0,0), *P, zero, *AP, *P );
    MVT::MvAddMv( zero, *P, anorm(0,0), *AP, *AP );
    Pivots[i]  = one;
  }

  for( i = q ; i < p ; i++ ){  
    if( q < i && i < p-1 ){ // Find the largest pivot
      imax = i;
      l = ipiv[imax-q];
      for( j = i+1 ; j < p ; j++ ){  
         k = ipiv[j-q];  
         if( Pivots[k] > Pivots[l] ){
           imax = j;  
           l = k;
         }
      } // end for
      if( imax > i ){ 
          l = ipiv[imax-q]; // swap ipiv( imax ) and ipiv(i+1)
          ipiv[imax-q] = ipiv[i-q];
          ipiv[i-q] = l;
      }
    } // largest pivot found
    int k = ipiv[i-q];
 
    if( Pivots[k]  > 1.5625e-2 ){
      anorm(0,0) =  Pivots[k]; // A-norm of u
    }
    else{ // anorm(0,0) = sqrt( U(:,k)'*C(:,k) );
      curind[0] = k;
      RCP<const MV> P = MVT::CloneView(*U_,curind);
      RCP<const MV> AP = MVT::CloneView(*C_,curind);
      MVT::MvTransMv( one, *P, *AP, anorm );
      anorm(0,0) = Teuchos::ScalarTraits<ScalarType>::squareroot( anorm(0,0) ) ;
    }
    if( rteps <= anorm(0,0) && anorm(0,0) < 9.765625e-4){
       /*
       C(:,k) = A*U(:,k);  % Change C
       fixC = U(:, ipiv(1:i-1) )'*C(:,k);
       U(:,k) = U(:,k) - U(:, ipiv(1:i-1) )*fixC;
       C(:,k) = C(:,k) - C(:, ipiv(1:i-1) )*fixC;
       anorm = sqrt( U(:,k)'*C(:,k) );
       */
       std::cout << "ARRQR: Bad case not implemented" << std::endl;
    }
    if( anorm(0,0) < rteps ){ // rank [U;C] = i-1
       std::cout << "ARRQR : deficient case not implemented " << std::endl;
       //U = U(:, ipiv(1:i-1) );
       //C = C(:, ipiv(1:i-1) );
       p = q + i; 
       // update curDim_ in State
       break; 
    }
    curind[0] = k;
    RCP<MV> P = MVT::CloneViewNonConst(*U_,curind);
    RCP<MV> AP = MVT::CloneViewNonConst(*C_,curind);
    MVT::MvAddMv( anorm(0,0), *P, zero, *AP, *P ); // U(:,k) = U(:,k)/anorm;
    MVT::MvAddMv( zero, *P, anorm(0,0), *AP, *AP ); // C(:,k) = C(:,k)/anorm;
    P = Teuchos::null;
    AP = Teuchos::null;
    Pivots[k] = one;                 // delete,  for diagonostic purposes
    P = MVT::CloneViewNonConst(*U_,curind);  // U(:,k)
    AP = MVT::CloneViewNonConst(*C_,curind); // C(:,k)
    for( j = i+1 ; j < p ; j++ ){
      l = ipiv[j-q];   // ahhh
      curind[0] = l;
      RCP<MV> Q = MVT::CloneViewNonConst(*U_,curind); // segmentation fault,  j=i+1=5
      MVT::MvTransMv( one, *Q, *AP, alpha); // alpha(0,0) = U(:,l)'*C(:,k);
      MVT::MvAddMv( -alpha(0,0), *P, one, *Q, *Q ); // U(:,l) -= U(:,k) * alpha(0,0);
      Q = Teuchos::null;
      RCP<MV> AQ = MVT::CloneViewNonConst(*C_,curind);
      MVT::MvAddMv( -alpha(0,0), *AP, one, *AQ, *AQ ); // C(:,l) -= C(:,l) - C(:,k) * alpha(0,0);
      AQ = Teuchos::null;
      gamma(0,0) = ( Pivots[l] - alpha(0,0))*( Pivots[l] + alpha(0,0));
      if( gamma(0,0) > 0){
        Pivots[l] = Teuchos::ScalarTraits<ScalarType>::squareroot( gamma(0,0) );
      }
      else {
        Pivots[l] = zero; //rank deficiency revealed
      }
    }
  }
  return p;
}

//  The method returns a string describing the solver manager.
template<class ScalarType, class MV, class OP>
std::string PCPGSolMgr<ScalarType,MV,OP>::description() const
{
  std::ostringstream oss;
  oss << "Belos::PCPGSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";
  oss << "{";
  oss << "Ortho Type='"<<orthoType_;
  oss << "}";
  return oss.str();
}
  
} // end Belos namespace

#endif /* BELOS_PCPG_SOLMGR_HPP */