This file is indexed.

/usr/include/trilinos/BelosOrthoManager.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// @HEADER
// ***********************************************************************
//
//                 Belos: Block Linear Solvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

/*! \file BelosOrthoManager.hpp
  \brief  Templated virtual class for providing orthogonalization/orthonormalization methods.
*/

#ifndef BELOS_ORTHOMANAGER_HPP
#define BELOS_ORTHOMANAGER_HPP

/*! \class Belos::OrthoManager
  
  \brief Belos's templated virtual class for providing routines for orthogonalization and 
  orthonormzalition of multivectors. 

  This class defines concepts of orthogonality through the definition of an
  inner product. It also provides computational routines for orthogonalization.

  A concrete implementation of this class is necessary. The user can create
  their own implementation if those supplied are not suitable for their needs.
  
  \author Chris Baker, Teri Barth, and Heidi Thornquist
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_Array.hpp"




namespace Belos {


  //! @name OrthoManager Exceptions
  //@{ 

  /** \brief Exception thrown to signal error in an orthogonalization manager method.
   */
  class OrthoError : public BelosError
  {public: OrthoError(const std::string& what_arg) : BelosError(what_arg) {}};

  //@}

  template <class ScalarType, class MV>
  class OrthoManager {
  public:
    //! @name Constructor/Destructor
    //@{ 
    //! Default constructor.
    OrthoManager() {};

    //! Destructor.
    virtual ~OrthoManager() {};
    //@}

    //! @name Orthogonalization methods
    //@{ 

    /*! \brief Provides the inner product defining the orthogonality concepts.

    All concepts of orthogonality discussed in this class are with respect to this inner product.

    \note This can be different than the MvTransMv method from the multivector class. For example,
    if there is a mass matrix \c M, then this might be the \c M inner product (\f$x^HMx\f$). 
    
     */
    virtual void innerProd( const MV &X, const MV &Y, Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const = 0;


    /*! \brief Provides the norm induced by innerProd().
     */
    virtual void norm( const MV& X, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > normvec ) const = 0;

    /*! \brief Given a list of (mutually and internally) orthonormal bases \c Q, this method
     * takes a multivector \c X and projects it onto the space orthogonal to the individual <tt>Q[i]</tt>, 
     * optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
     * to the inner product innerProd().
     *  
     * After calling this routine, \c X will be orthogonal to each of the <tt>Q[i]</tt>.
     *
     @param X [in/out] The multivector to be modified.
       On output, \c X will be orthogonal to <tt>Q[i]</tt> with respect to innerProd().

     @param C [out] The coefficients of \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer 
       and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
       routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of 
       \c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
       pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.

     @param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
     orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
    */
    virtual void project ( MV &X, 
                           Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C, 
                           Teuchos::Array<Teuchos::RCP<const MV> > Q) const = 0;

    /*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
     *
     * This routine returns an integer \c rank stating the rank of the computed basis. If \c X does not have full rank and the normalize() routine does 
     * not attempt to augment the subspace, then \c rank may be smaller than the number of columns in \c X. In this case, only the first \c rank columns of 
     * output \c X and first \c rank rows of \c B will be valid.
     *  
     @param X [in/out] The multivector to the modified. 
       On output, \c X will have some number of orthonormal columns (with respect to innerProd()).

     @param B [out] The coefficients of the original \c X with respect to the computed basis. This matrix is not necessarily triangular; see the documentation
       for specific orthogonalization managers.

     @return Rank of the basis computed by this method.
    */
    virtual int normalize ( MV &X, Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const = 0;


    /*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
     *
     *  This routine returns an integer \c rank stating the rank of the computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$ does not 
     *  have dimension as large as the number of columns of \c X and the orthogonalization manager doe not attempt to augment the subspace, then \c rank 
     *  may be smaller than the number of columns of \c X. In this case, only the first \c rank columns of output \c X and first \c rank rows of \c B will 
     *  be valid.
     *
     * \note This routine guarantees both the orthgonality constraints against the <tt>Q[i]</tt> as well as the orthonormality constraints. Therefore, this method 
     * is not necessarily equivalent to calling project() followed by a call to normalize(); see the documentation for specific orthogonalization managers.
     *
     @param X [in/out] The multivector to the modified. 
       On output, the relevant rows of \c X will be orthogonal to the <tt>Q[i]</tt> and will have orthonormal columns (with respect to innerProd()).

     @param C [out] The coefficients of the original \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer 
       and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
       routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of 
       \c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
       pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.

     @param B [out] The coefficients of the original \c X with respect to the computed basis. This matrix is not necessarily triangular; see the documentation
       for specific orthogonalization managers.

     @param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
     orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.

     @return Rank of the basis computed by this method.
    */
    virtual int projectAndNormalize ( MV &X, 
                                      Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C, 
                                      Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B, 
                                      Teuchos::Array<Teuchos::RCP<const MV> > Q ) const = 0;

    //@}

    //! @name Error methods
    //@{ 

    /*! \brief This method computes the error in orthonormality of a multivector.
     */
    virtual typename Teuchos::ScalarTraits< ScalarType >::magnitudeType orthonormError(const MV &X) const = 0;

    /*! \brief This method computes the error in orthogonality of two multivectors.
     */
    virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType orthogError(const MV &X1, const MV &X2) const = 0;

    //@}


    //! @name Label methods
    //@{

    /*! \brief This method sets the label used by the timers in the orthogonalization manager.
     */
    virtual void setLabel(const std::string& label) = 0;
 
    /*! \brief This method returns the label being used by the timers in the orthogonalization manager.
     */
    virtual const std::string& getLabel() const = 0;
    
    //@}

  };

} // end of Belos namespace


#endif

// end of file BelosOrthoManager.hpp