/usr/include/trilinos/BelosOrthoManager.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | // @HEADER
// ***********************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file BelosOrthoManager.hpp
\brief Templated virtual class for providing orthogonalization/orthonormalization methods.
*/
#ifndef BELOS_ORTHOMANAGER_HPP
#define BELOS_ORTHOMANAGER_HPP
/*! \class Belos::OrthoManager
\brief Belos's templated virtual class for providing routines for orthogonalization and
orthonormzalition of multivectors.
This class defines concepts of orthogonality through the definition of an
inner product. It also provides computational routines for orthogonalization.
A concrete implementation of this class is necessary. The user can create
their own implementation if those supplied are not suitable for their needs.
\author Chris Baker, Teri Barth, and Heidi Thornquist
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_Array.hpp"
namespace Belos {
//! @name OrthoManager Exceptions
//@{
/** \brief Exception thrown to signal error in an orthogonalization manager method.
*/
class OrthoError : public BelosError
{public: OrthoError(const std::string& what_arg) : BelosError(what_arg) {}};
//@}
template <class ScalarType, class MV>
class OrthoManager {
public:
//! @name Constructor/Destructor
//@{
//! Default constructor.
OrthoManager() {};
//! Destructor.
virtual ~OrthoManager() {};
//@}
//! @name Orthogonalization methods
//@{
/*! \brief Provides the inner product defining the orthogonality concepts.
All concepts of orthogonality discussed in this class are with respect to this inner product.
\note This can be different than the MvTransMv method from the multivector class. For example,
if there is a mass matrix \c M, then this might be the \c M inner product (\f$x^HMx\f$).
*/
virtual void innerProd( const MV &X, const MV &Y, Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const = 0;
/*! \brief Provides the norm induced by innerProd().
*/
virtual void norm( const MV& X, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > normvec ) const = 0;
/*! \brief Given a list of (mutually and internally) orthonormal bases \c Q, this method
* takes a multivector \c X and projects it onto the space orthogonal to the individual <tt>Q[i]</tt>,
* optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
* to the inner product innerProd().
*
* After calling this routine, \c X will be orthogonal to each of the <tt>Q[i]</tt>.
*
@param X [in/out] The multivector to be modified.
On output, \c X will be orthogonal to <tt>Q[i]</tt> with respect to innerProd().
@param C [out] The coefficients of \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer
and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of
\c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
*/
virtual void project ( MV &X,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const = 0;
/*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
*
* This routine returns an integer \c rank stating the rank of the computed basis. If \c X does not have full rank and the normalize() routine does
* not attempt to augment the subspace, then \c rank may be smaller than the number of columns in \c X. In this case, only the first \c rank columns of
* output \c X and first \c rank rows of \c B will be valid.
*
@param X [in/out] The multivector to the modified.
On output, \c X will have some number of orthonormal columns (with respect to innerProd()).
@param B [out] The coefficients of the original \c X with respect to the computed basis. This matrix is not necessarily triangular; see the documentation
for specific orthogonalization managers.
@return Rank of the basis computed by this method.
*/
virtual int normalize ( MV &X, Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const = 0;
/*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
*
* This routine returns an integer \c rank stating the rank of the computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$ does not
* have dimension as large as the number of columns of \c X and the orthogonalization manager doe not attempt to augment the subspace, then \c rank
* may be smaller than the number of columns of \c X. In this case, only the first \c rank columns of output \c X and first \c rank rows of \c B will
* be valid.
*
* \note This routine guarantees both the orthgonality constraints against the <tt>Q[i]</tt> as well as the orthonormality constraints. Therefore, this method
* is not necessarily equivalent to calling project() followed by a call to normalize(); see the documentation for specific orthogonalization managers.
*
@param X [in/out] The multivector to the modified.
On output, the relevant rows of \c X will be orthogonal to the <tt>Q[i]</tt> and will have orthonormal columns (with respect to innerProd()).
@param C [out] The coefficients of the original \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer
and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of
\c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
@param B [out] The coefficients of the original \c X with respect to the computed basis. This matrix is not necessarily triangular; see the documentation
for specific orthogonalization managers.
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
@return Rank of the basis computed by this method.
*/
virtual int projectAndNormalize ( MV &X,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q ) const = 0;
//@}
//! @name Error methods
//@{
/*! \brief This method computes the error in orthonormality of a multivector.
*/
virtual typename Teuchos::ScalarTraits< ScalarType >::magnitudeType orthonormError(const MV &X) const = 0;
/*! \brief This method computes the error in orthogonality of two multivectors.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType orthogError(const MV &X1, const MV &X2) const = 0;
//@}
//! @name Label methods
//@{
/*! \brief This method sets the label used by the timers in the orthogonalization manager.
*/
virtual void setLabel(const std::string& label) = 0;
/*! \brief This method returns the label being used by the timers in the orthogonalization manager.
*/
virtual const std::string& getLabel() const = 0;
//@}
};
} // end of Belos namespace
#endif
// end of file BelosOrthoManager.hpp
|