/usr/include/trilinos/BelosMatOrthoManager.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | // @HEADER
// ***********************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file BelosMatOrthoManager.hpp
\brief Templated virtual class for providing orthogonalization/orthonormalization methods with matrix-based
inner products.
*/
#ifndef BELOS_MATORTHOMANAGER_HPP
#define BELOS_MATORTHOMANAGER_HPP
/*! \class Belos::MatOrthoManager
\brief Belos's templated virtual class for providing routines for orthogonalization and
orthonormzalition of multivectors using matrix-based inner products.
This class extends Belos::OrthoManager by providing extra calling arguments to orthogonalization
routines, to reduce the cost of applying the inner product in cases where the user already
has the image of the source multivector under the inner product matrix.
A concrete implementation of this class is necessary. The user can create
their own implementation if those supplied are not suitable for their needs.
\author Chris Baker, Teri Barth, and Heidi Thornquist
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosOrthoManager.hpp"
#include "BelosMultiVecTraits.hpp"
#include "BelosOperatorTraits.hpp"
namespace Belos {
template <class ScalarType, class MV, class OP>
class MatOrthoManager : public OrthoManager<ScalarType,MV> {
protected:
Teuchos::RCP<const OP> _Op;
bool _hasOp;
public:
//! @name Constructor/Destructor
//@{
//! Default constructor.
MatOrthoManager(Teuchos::RCP<const OP> Op = Teuchos::null) : _Op(Op), _hasOp(Op!=Teuchos::null) {};
//! Destructor.
virtual ~MatOrthoManager() {};
//@}
//! @name Accessor routines
//@{
//! Set operator.
void setOp( Teuchos::RCP<const OP> Op ) {
_Op = Op;
_hasOp = (_Op != Teuchos::null);
};
//! Get operator.
Teuchos::RCP<const OP> getOp() const { return _Op; }
//@}
//! @name Orthogonalization methods
//@{
/*! \brief Provides the inner product defining the orthogonality concepts, using the provided operator.
All concepts of orthogonality discussed in this class are with respect to this inner product.
*/
void innerProd( const MV& X, const MV& Y,
Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const {
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
Teuchos::RCP<const MV> P,Q;
Teuchos::RCP<MV> R;
if (_hasOp) {
// attempt to minimize the amount of work in applying
if ( MVT::GetNumberVecs(X) < MVT::GetNumberVecs(Y) ) {
R = MVT::Clone(X,MVT::GetNumberVecs(X));
OPT::Apply(*_Op,X,*R);
P = R;
Q = Teuchos::rcp( &Y, false );
}
else {
P = Teuchos::rcp( &X, false );
R = MVT::Clone(Y,MVT::GetNumberVecs(Y));
OPT::Apply(*_Op,Y,*R);
Q = R;
}
}
else {
P = Teuchos::rcp( &X, false );
Q = Teuchos::rcp( &Y, false );
}
MVT::MvTransMv(SCT::one(),*P,*Q,Z);
}
/*! \brief Provides the inner product defining the orthogonality concepts, using the provided operator.
* The method has the options of exploiting a caller-provided \c MX.
*
* If pointer \c MY is null, then this routine calls innerProd(X,Y,Z). Otherwise, it forgoes the
* operator application and uses \c *MY in the computation of the inner product.
*/
void innerProd( const MV& X, const MV& Y, Teuchos::RCP<const MV> MY,
Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const {
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
Teuchos::RCP<MV> P,Q;
if ( MY == Teuchos::null ) {
innerProd(X,Y,Z);
}
else if ( _hasOp ) {
// the user has done the matrix std::vector for us
MVT::MvTransMv(SCT::one(),X,*MY,Z);
}
else {
// there is no matrix std::vector
MVT::MvTransMv(SCT::one(),X,Y,Z);
}
}
/*! \brief Provides the norm induced by innerProd().
*/
void norm( const MV& X, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > normvec ) const {
norm(X,Teuchos::null,normvec);
}
/*! \brief Provides the norm induced by innerProd().
* The method has the options of exploiting a caller-provided \c MX.
*/
void norm( const MV& X, Teuchos::RCP<const MV> MX, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > normvec ) const {
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
if (!_hasOp) {
MX = Teuchos::rcp(&X,false);
}
else if (MX == Teuchos::null) {
Teuchos::RCP<MV> R = MVT::Clone(X,MVT::GetNumberVecs(X));
OPT::Apply(*_Op,X,*R);
MX = R;
}
Teuchos::SerialDenseMatrix<int,ScalarType> z(1,1);
Teuchos::RCP<const MV> Xi, MXi;
std::vector<int> ind(1);
for (int i=0; i<MVT::GetNumberVecs(X); i++) {
ind[0] = i;
Xi = MVT::CloneView(X,ind);
MXi = MVT::CloneView(*MX,ind);
MVT::MvTransMv(SCT::one(),*Xi,*MXi,z);
normvec[i] = SCT::magnitude( SCT::squareroot( z(0,0) ) );
}
}
/*! \brief Given a list of (mutually and internally) orthonormal bases \c Q, this method
* takes a multivector \c X and projects it onto the space orthogonal to the individual <tt>Q[i]</tt>,
* optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
* to the inner product innerProd().
*
* After calling this routine, \c X will be orthogonal to each of the <tt>Q[i]</tt>.
*
@param X [in/out] The multivector to be modified.
On output, \c X will be orthogonal to <tt>Q[i]</tt> with respect to innerProd().
@param MX [in] The image of the multivector under the specified operator. If \c MX is null, it is not used.
@param C [out] The coefficients of \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer
and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of
\c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
*/
virtual void project ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const = 0;
/*! \brief This method calls project(X,Teuchos::null,C,Q); see documentation for that function.
*/
virtual void project ( MV &X,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const {
project(X,Teuchos::null,C,Q);
}
/*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
*
* This routine returns an integer \c rank stating the rank of the computed basis. If \c X does not have full rank and the normalize() routine does
* not attempt to augment the subspace, then \c rank may be smaller than the number of columns in \c X. In this case, only the first \c rank columns of
* output \c X and first \c rank rows of \c B will be valid.
*
@param X [in/out] The multivector to the modified.
On output, \c X will have some number of orthonormal columns (with respect to innerProd()).
@param MX [in/out] The image of the multivector under the specified operator. If \c MX is null, it is not used.
On output, it returns the image of the valid basis vectors under the specified operator.
@param B [out] The coefficients of \c X in the computed basis. If \c B is a non-null pointer
and \c *B has appropriate dimensions, then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *B. If \c B is a non-null pointer whose size does not match the dimensions of
\c X, then a std::invalid_argument std::exception will be thrown. Otherwise,
the orthogonalization manager will declare storage for the coefficients and the user will not have access to them. <b>This matrix may or may not be triangular; see
documentation for individual orthogonalization managers.</b>
@return Rank of the basis computed by this method.
*/
virtual int normalize ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const = 0;
/*! \brief This method calls normalize(X,Teuchos::null,B); see documentation for that function.
*/
virtual int normalize ( MV &X, Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const {
return normalize(X,Teuchos::null,B);
}
/*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
*
* This routine returns an integer \c rank stating the rank of the computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$ does not
* have dimension as large as the number of columns of \c X and the orthogonalization manager doe not attempt to augment the subspace, then \c rank
* may be smaller than the number of columns of \c X. In this case, only the first \c rank columns of output \c X and first \c rank rows of \c B will
* be valid.
*
* \note This routine guarantees both the orthgonality constraints against the <tt>Q[i]</tt> as well as the orthonormality constraints. Therefore, this method
* is not necessarily equivalent to calling project() followed by a call to normalize(); see the documentation for specific orthogonalization managers.
*
@param X [in/out] The multivector to the modified.
On output, the relevant rows of \c X will be orthogonal to the <tt>Q[i]</tt> and will have orthonormal columns (with respect to innerProd()).
@param MX [in/out] The image of the multivector under the specified operator. If \c MX is null, it is not used.
On output, it returns the image of the valid basis vectors under the specified operator.
@param C [out] The coefficients of the original \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer
and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of
\c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
@param B [out] The coefficients of \c X in the computed basis. If \c B is a non-null pointer
and \c *B has appropriate dimensions, then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *B. If \c B is a non-null pointer whose size does not match the dimensions of
\c X, then a std::invalid_argument std::exception will be thrown. Otherwise,
the orthogonalization manager will declare storage for the coefficients and the user will not have access to them. <b>This matrix may or may not be triangular; see
documentation for individual orthogonalization managers.</b>
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
@return Rank of the basis computed by this method.
*/
virtual int projectAndNormalize ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q ) const = 0;
/*! \brief This method calls projectAndNormalize(X,Teuchos::null,C,B,Q); see documentation for that function.
*/
virtual int projectAndNormalize ( MV &X,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q ) const {
return projectAndNormalize(X,Teuchos::null,C,B,Q);
}
//@}
//! @name Error methods
//@{
/*! \brief This method computes the error in orthonormality of a multivector.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormError(const MV &X) const {
return orthonormError(X,Teuchos::null);
}
/*! \brief This method computes the error in orthonormality of a multivector.
* The method has the option of exploiting a caller-provided \c MX.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormError(const MV &X, Teuchos::RCP<const MV> MX) const = 0;
/*! \brief This method computes the error in orthogonality of two multivectors. This method
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogError(const MV &X1, const MV &X2) const {
return orthogError(X1,Teuchos::null,X2);
}
/*! \brief This method computes the error in orthogonality of two multivectors.
* The method has the option of
* exploiting a caller-provided \c MX.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogError(const MV &X1, Teuchos::RCP<const MV> MX1, const MV &X2) const = 0;
//@}
};
} // end of Belos namespace
#endif
// end of file BelosMatOrthoManager.hpp
|