This file is indexed.

/usr/include/trilinos/BelosLinearProblem.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// @HEADER
// ***********************************************************************
//
//                 Belos: Block Linear Solvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef BELOS_LINEAR_PROBLEM_HPP
#define BELOS_LINEAR_PROBLEM_HPP

/*! \file BelosLinearProblem.hpp
    \brief Class which describes the linear problem to be solved by the iterative solver.
*/

#include "BelosMultiVecTraits.hpp"
#include "BelosOperatorTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::null;
using Teuchos::rcp_const_cast;
using Teuchos::ParameterList;

/*! \class Belos::LinearProblem  
  \brief The Belos::LinearProblem class is a wrapper that encapsulates the 
  general information needed for solving a linear system of equations.  
*/

namespace Belos {

  //! @name LinearProblem Exceptions
  //@{
  
  /** \brief Exception thrown to signal error with the Belos::LinearProblem object.
   */
  class LinearProblemError : public BelosError
  {public: LinearProblemError(const std::string& what_arg) : BelosError(what_arg) {}};
  
  //@}
  

  template <class ScalarType, class MV, class OP>
  class LinearProblem {
   
  public:
    
    //! @name Constructors/Destructor
    //@{ 
    //!  Default Constructor.
    /*! Creates an empty Belos::LinearProblem instance. The operator A, left-hand-side X
      and right-hand-side B must be set using the setOperator(), setLHS() and setRHS()
      methods respectively.
    */
    LinearProblem(void);
    
    //! Unpreconditioned linear system constructor.
    /*! Creates an unpreconditioned LinearProblem instance with the 
      Belos::Operator (\c A), initial guess (\c X), and right hand side (\c B). 
      Preconditioners can be set using the setLeftPrec() and setRightPrec() methods, and
      scaling can also be set using the setLeftScale() and setRightScale() methods.
    */
    LinearProblem(const RCP<const OP> &A, 
		  const RCP<MV> &X, 
		  const RCP<const MV> &B
		  );
    
    //! Copy Constructor.
    /*! Makes copy of an existing LinearProblem instance.
     */
    LinearProblem(const LinearProblem<ScalarType,MV,OP>& Problem);
    
    //! Destructor.
    /*! Completely deletes a LinearProblem object.  
     */
    virtual ~LinearProblem(void);
    //@}
    
    //! @name Set methods
    //@{ 
    
    //! Set Operator A of linear problem AX = B.
    /*! Sets a pointer to an Operator.  No copy of the operator is made.
     */
    void setOperator(const RCP<const OP> &A) { A_ = A; isSet_=false; }
    
    //! Set left-hand-side X of linear problem AX = B.
    /*! Sets a pointer to a MultiVec.  No copy of the object is made.
     */
    void setLHS(const RCP<MV> &X) { X_ = X; isSet_=false; }
    
    //! Set right-hand-side B of linear problem AX = B.
    /*! Sets a pointer to a MultiVec.  No copy of the object is made.
     */
    void setRHS(const RCP<const MV> &B) { B_ = B; isSet_=false; }
    
    //! Set left preconditioning operator (\c LP) of linear problem AX = B.
    /*! Sets a pointer to an Operator.  No copy of the operator is made.
     */
    void setLeftPrec(const RCP<const OP> &LP) {  LP_ = LP; }
    
    //! Set right preconditioning operator (\c RP) of linear problem AX = B.
    /*! Sets a pointer to an Operator.  No copy of the operator is made.
     */
    void setRightPrec(const RCP<const OP> &RP) { RP_ = RP; }
    
    //! Inform the linear problem that the solver is finished with the current linear system.
    /*! \note This method is to be <b> only </b> used by the solver to inform the linear problem that it's
      finished with this block of linear systems.  The next time the Curr(RHS/LHS)Vec() is called, the next
      linear system will be returned.  Computing the next linear system isn't done in this method in case the 
      blocksize is changed.
    */
    void setCurrLS();
    
    //! Inform the linear problem of the linear systems that need to be solved next.
    /*! Any calls to get the current RHS/LHS vectors after this method is called will return the new
      linear systems indicated by \c index.  The length of \c index is assumed to be the blocksize and entries
      of \c index must be between 0 and the number of vectors in the RHS/LHS multivector.  An entry of the
      \c index std::vector can also be -1, which means this column of the linear system is augmented using a random
      std::vector.
    */
    void setLSIndex(std::vector<int>& index); 
    
    //! Inform the linear problem that the operator is Hermitian.
    /*! This knowledge may allow the operator to take advantage of the linear problem symmetry.
      However, this should not be set to true if the preconditioner is not Hermitian, or symmetrically
      applied.
    */
    void setHermitian(){ isHermitian_ = true; }
   
    //! Set the label prefix used by the timers in this object.  The default is "Belos".
    /*! \note The timers are created during the first call to setProblem().  Any calls to this method to change 
        the label after that will not change the label used in the timer.
    */ 
    void setLabel(const std::string& label) { label_ = label; }

    //! Compute the new solution to the linear system given the /c update.
    /*! \note If \c updateLP is true, then the next time GetCurrResVecs is called, a new residual will be computed.  
      This keeps the linear problem from having to recompute the residual vector everytime it's asked for if
      the solution hasn't been updated.  If \c updateLP is false, the new solution is computed without actually 
      updating the linear problem.
    */
    RCP<MV> updateSolution( const RCP<MV>& update = null,
				    bool updateLP = false,
                                    ScalarType scale = Teuchos::ScalarTraits<ScalarType>::one() );    

    //! Compute the new solution to the linear system given the /c update without updating the linear problem.
    RCP<MV> updateSolution( const RCP<MV>& update = null,
                                    ScalarType scale = Teuchos::ScalarTraits<ScalarType>::one() ) const
    { return const_cast<LinearProblem<ScalarType,MV,OP> *>(this)->updateSolution( update, false, scale ); }

    //@}
    
    //! @name Set / Reset method
    //@{ 
    
    //! Setup the linear problem manager.
    /*! This is useful for solving the linear system with another right-hand side or getting
      the linear problem prepared to solve the linear system that was already passed in.  
      The internal flags will be set as if the linear system manager was just initialized 
      and the initial residual will be computed.
    */
    bool setProblem( const RCP<MV> &newX = null, const RCP<const MV> &newB = null );

    //@}
    
    //! @name Accessor methods
    //@{ 
    
    //! Get a pointer to the operator A.
    RCP<const OP> getOperator() const { return(A_); }
    
    //! Get a pointer to the left-hand side X.
    RCP<MV> getLHS() const { return(X_); }
    
    //! Get a pointer to the right-hand side B.
    RCP<const MV> getRHS() const { return(B_); }
    
    //! Get a pointer to the initial residual vector.
    /*! \note This is the unpreconditioned residual.
     */
    RCP<const MV> getInitResVec() const { return(R0_); }
    
    //! Get a pointer to the preconditioned initial residual vector.
    /*! \note This is the preconditioned residual if the linear system is preconditioned on the left.
     */
    RCP<const MV> getInitPrecResVec() const { return(PR0_); }
    
    //! Get a pointer to the current left-hand side (solution) of the linear system.
    /*! This method is called by the solver or any method that is interested in the current linear system
      being solved for.  
      <ol>
      <li> If the solution has been updated by the solver, then this vector is current ( see SolutionUpdated() ).
      <li> If there is no linear system to solve, this method will return a NULL pointer
      </ol>
    */
    RCP<MV> getCurrLHSVec();
    
    //! Get a pointer to the current right-hand side of the linear system.
    /*! This method is called by the solver of any method that is interested in the current linear system
      being solved for.  
      <ol>
      <li> If the solution has been updated by the solver, then this vector is current ( see SolutionUpdated() ).
      <li> If there is no linear system to solve, this method will return a NULL pointer
      </ol>
    */	
    RCP<MV> getCurrRHSVec();
    
    //! Get a pointer to the left preconditioning operator.
    RCP<const OP> getLeftPrec() const { return(LP_); };
    
    //! Get a pointer to the right preconditioning operator.
    RCP<const OP> getRightPrec() const { return(RP_); };
    
    //! Get the 0-based index std::vector indicating the current linear systems being solved for.
    /*! Since the block size is independent of the number of right-hand sides for
      some solvers (GMRES, CG, etc.), it is important to know which linear systems
      are being solved for.  That may mean you need to update the information
      about the norms of your initial residual std::vector for weighting purposes.  This
      information can keep you from querying the solver for information that rarely
      changes.
      \note The length of the index std::vector is the number of right-hand sides being solved for.
            If an entry of this std::vector is -1 then that linear system is an augmented linear
	    system and doesn't need to be considered for convergence.
      \note The std::vector returned from this method is valid if isProblemSet() returns true.
    */
    const std::vector<int> getLSIndex() const { return(rhsIndex_); }

    //! Get the number of linear systems that have been set with this LinearProblem object.
    /* This can be used by status test classes to determine if the solver manager has advanced 
       and is solving another linear system.
    */
    int getLSNumber() const { return(lsNum_); }

    /*! \brief Return the timers for this object.
     *
     * The timers are ordered as follows:
     *   - time spent applying operator
     *   - time spent applying preconditioner
     */
    Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
      return tuple(timerOp_,timerPrec_);
    }


    //@}
    
    //! @name State methods
    //@{ 
    
    //! Get the current status of the solution.
    /*! This only means that the current linear system being solved for ( obtained by getCurr<LHS/RHS>Vec() )
      has been updated by the solver.  This will be true every iteration for solvers like CG, but not
      true until restarts for GMRES.
    */
    bool isSolutionUpdated() const { return(solutionUpdated_); }

    //! If the problem has been set, this will return true.
    bool isProblemSet() const { return(isSet_); }
    
    //! Get the current symmetry of the operator.
    bool isHermitian() const { return(isHermitian_); }
    
    //! Get information on whether the linear system is being preconditioned on the left.
    bool isLeftPrec() const { return(LP_!=null); }

    //! Get information on whether the linear system is being preconditioned on the right.
    bool isRightPrec() const { return(RP_!=null); }
 
    //@}
    
    //! @name Apply / Compute methods
    //@{ 
    
    //! Apply the composite operator of this linear problem to \c x, returning \c y.
    /*! This application is the composition of the left/right preconditioner and operator.
      Most Krylov methods will use this application method within their code.
      
      Precondition:<ul>
      <li><tt>getOperator().get()!=NULL</tt>
      </ul>
    */
    void apply( const MV& x, MV& y ) const;
    
    //! Apply ONLY the operator to \c x, returning \c y.
    /*! This application is only of the linear problem operator, no preconditioners are applied.
      Flexible variants of Krylov methods will use this application method within their code.
      
      Precondition:<ul>
      <li><tt>getOperator().get()!=NULL</tt>
      </ul>
    */
    void applyOp( const MV& x, MV& y ) const;
    
    //! Apply ONLY the left preconditioner to \c x, returning \c y.  
    /*! This application is only of the left preconditioner, which may be required for flexible variants
      of Krylov methods.
      \note This will return Undefined if the left preconditioner is not defined for this operator.
    */  
    void applyLeftPrec( const MV& x, MV& y ) const;
    
    //! Apply ONLY the right preconditioner to \c x, returning \c y.
    /*! This application is only of the right preconditioner, which may be required for flexible variants
      of Krylov methods.
      \note This will return Undefined if the right preconditioner is not defined for this operator.
    */
    void applyRightPrec( const MV& x, MV& y ) const;
    
    //! Compute a residual \c R for this operator given a solution \c X, and right-hand side \c B.
    /*! This method will compute the residual for the current linear system if \c X and \c B are null pointers.
      The result will be returned into R.  Otherwise <tt>R = OP(A)X - B</tt> will be computed and returned.
      \note This residual will not be preconditioned if the system has a left preconditioner.
    */
    void computeCurrResVec( MV* R , const MV* X = 0, const MV* B = 0 ) const;

    //! Compute a residual \c R for this operator given a solution \c X, and right-hand side \c B.
    /*! This method will compute the residual for the current linear system if \c X and \c B are null pointers.
      The result will be returned into R.  Otherwise <tt>R = OP(A)X - B</tt> will be computed and returned.
      \note This residual will be preconditioned if the system has a left preconditioner.
    */
    void computeCurrPrecResVec( MV* R, const MV* X = 0, const MV* B = 0 ) const;
    
    //@}
    
  private:
    
    //! Operator of linear system. 
    RCP<const OP> A_;
    
    //! Solution std::vector of linear system.
    RCP<MV> X_;
    
    //! Current solution std::vector of the linear system.
    RCP<MV> curX_;
    
    //! Right-hand side of linear system.
    RCP<const MV> B_;
    
    //! Current right-hand side of the linear system.
    RCP<MV> curB_;
    
    //! Initial residual of the linear system.
    RCP<MV> R0_;
   
    //! Preconditioned initial residual of the linear system.
    RCP<MV> PR0_;
 
    //! Left preconditioning operator of linear system
    RCP<const OP> LP_;  
    
    //! Right preconditioning operator of linear system
    RCP<const OP> RP_;
    
    //! Timers
    mutable Teuchos::RCP<Teuchos::Time> timerOp_, timerPrec_;

    //! Current block size of linear system.
    int blocksize_;

    //! Number of linear systems that are currently being solver for ( <= blocksize_ )
    int num2Solve_;
    
    //! Indices of current linear systems being solver for.
    std::vector<int> rhsIndex_;    

    //! Number of linear systems that have been loaded in this linear problem object.
    int lsNum_;

    //! Booleans to keep track of linear problem attributes/status.
    bool Left_Scale_;
    bool Right_Scale_;
    bool isSet_;
    bool isHermitian_;
    bool solutionUpdated_;    
   
    //! Linear problem label that prefixes the timer labels.
    std::string label_;
 
    typedef MultiVecTraits<ScalarType,MV>  MVT;
    typedef OperatorTraits<ScalarType,MV,OP>  OPT;
  };
  
  //--------------------------------------------
  //  Constructor Implementations
  //--------------------------------------------
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::LinearProblem(void) : 
    blocksize_(0),
    num2Solve_(0),
    rhsIndex_(0),
    lsNum_(0),
    Left_Scale_(false),
    Right_Scale_(false),
    isSet_(false),
    isHermitian_(false),
    solutionUpdated_(false),
    label_("Belos")
  {
  }
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::LinearProblem(const RCP<const OP> &A, 
						 const RCP<MV> &X, 
						 const RCP<const MV> &B
						 ) :
    A_(A),
    X_(X),
    B_(B),
    blocksize_(0),
    num2Solve_(0),
    rhsIndex_(0),
    lsNum_(0),
    Left_Scale_(false),
    Right_Scale_(false),
    isSet_(false),
    isHermitian_(false),
    solutionUpdated_(false),
    label_("Belos")
  {
  }
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::LinearProblem(const LinearProblem<ScalarType,MV,OP>& Problem) :
    A_(Problem.A_),
    X_(Problem.X_),
    curX_(Problem.curX_),
    B_(Problem.B_),
    curB_(Problem.curB_),
    R0_(Problem.R0_),
    PR0_(Problem.PR0_),
    LP_(Problem.LP_),
    RP_(Problem.RP_),
    timerOp_(Problem.timerOp_),
    timerPrec_(Problem.timerPrec_),
    blocksize_(Problem.blocksize_),
    num2Solve_(Problem.num2Solve_),
    rhsIndex_(Problem.rhsIndex_),
    lsNum_(Problem.lsNum_),
    Left_Scale_(Problem.Left_Scale_),
    Right_Scale_(Problem.Right_Scale_),
    isSet_(Problem.isSet_),
    isHermitian_(Problem.isHermitian_),
    solutionUpdated_(Problem.solutionUpdated_),
    label_(Problem.label_)
  {
  }
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::~LinearProblem(void)
  {}
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::setLSIndex(std::vector<int>& index)
  {
    // Set new linear systems using the indices in index.
    rhsIndex_ = index;
    
    // Compute the new block linear system.
    // ( first clean up old linear system )
    curB_ = null;
    curX_ = null;
   
    // Create indices for the new linear system.
    int validIdx = 0, ivalidIdx = 0;
    blocksize_ = rhsIndex_.size();
    std::vector<int> vldIndex( blocksize_ );
    std::vector<int> newIndex( blocksize_ );
    std::vector<int> iIndex( blocksize_ );
    for (int i=0; i<blocksize_; ++i) {
      if (rhsIndex_[i] > -1) {
        vldIndex[validIdx] = rhsIndex_[i];
        newIndex[validIdx] = i;
        validIdx++;
      }
      else {
        iIndex[ivalidIdx] = i;
        ivalidIdx++;
      }
    }
    vldIndex.resize(validIdx);
    newIndex.resize(validIdx);   
    iIndex.resize(ivalidIdx);
    num2Solve_ = validIdx;

    // Create the new linear system using index
    if (num2Solve_ != blocksize_) {
      newIndex.resize(num2Solve_);
      vldIndex.resize(num2Solve_);
      //
      // First create multivectors of blocksize.
      // Fill the RHS with random vectors LHS with zero vectors.
      curX_ = MVT::Clone( *X_, blocksize_ );
      MVT::MvInit(*curX_);
      curB_ = MVT::Clone( *B_, blocksize_ );
      MVT::MvRandom(*curB_);
      //
      // Now put in the part of B into curB 
      RCP<const MV> tptr = MVT::CloneView( *B_, vldIndex );
      MVT::SetBlock( *tptr, newIndex, *curB_ );
      //
      // Now put in the part of X into curX
      tptr = MVT::CloneView( *X_, vldIndex );
      MVT::SetBlock( *tptr, newIndex, *curX_ );
      //
      solutionUpdated_ = false;
    }
    else {
      curX_ = MVT::CloneViewNonConst( *X_, rhsIndex_ );
      curB_ = rcp_const_cast<MV>(MVT::CloneView( *B_, rhsIndex_ ));
    }
    //
    // Increment the number of linear systems that have been loaded into this object.
    //
    lsNum_++;
  }


  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::setCurrLS() 
  { 
    //
    // We only need to copy the solutions back if the linear systems of
    // interest are less than the block size.
    //
    if (num2Solve_ < blocksize_) {
      //
      // Get a view of the current solutions and correction std::vector.
      //
      int validIdx = 0;
      std::vector<int> newIndex( num2Solve_ );
      std::vector<int> vldIndex( num2Solve_ );
      for (int i=0; i<blocksize_; ++i) {
        if ( rhsIndex_[i] > -1 ) { 
          vldIndex[validIdx] = rhsIndex_[i];
	  newIndex[validIdx] = i;
          validIdx++;
        }	
      }
      RCP<MV> tptr = MVT::CloneViewNonConst( *curX_, newIndex );
      MVT::SetBlock( *tptr, vldIndex, *X_ );
    }
    //
    // Clear the current vectors of this linear system so that any future calls
    // to get the vectors for this system return null pointers.
    //
    curX_ = null;
    curB_ = null;
    rhsIndex_.resize(0);
  }
  

  template <class ScalarType, class MV, class OP>
  RCP<MV> LinearProblem<ScalarType,MV,OP>::updateSolution( const RCP<MV>& update, 
							   bool updateLP,
							   ScalarType scale )
  { 
    RCP<MV> newSoln;
    if (update != null) {
      if (updateLP == true) {
	if (RP_!=null) {
	  //
	  // Apply the right preconditioner before computing the current solution.
	  RCP<MV> TrueUpdate = MVT::Clone( *update, MVT::GetNumberVecs( *update ) );
	  {
	    Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	    OPT::Apply( *RP_, *update, *TrueUpdate ); 
	  }
	  MVT::MvAddMv( 1.0, *curX_, scale, *TrueUpdate, *curX_ ); 
	} 
	else {
	  MVT::MvAddMv( 1.0, *curX_, scale, *update, *curX_ ); 
	}
	solutionUpdated_ = true; 
	newSoln = curX_;
      }
      else {
	newSoln = MVT::Clone( *update, MVT::GetNumberVecs( *update ) );
	if (RP_!=null) {
	  //
	  // Apply the right preconditioner before computing the current solution.
	  RCP<MV> trueUpdate = MVT::Clone( *update, MVT::GetNumberVecs( *update ) );
	  {
	    Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	    OPT::Apply( *RP_, *update, *trueUpdate ); 
	  }
	  MVT::MvAddMv( 1.0, *curX_, scale, *trueUpdate, *newSoln ); 
	} 
	else {
	  MVT::MvAddMv( 1.0, *curX_, scale, *update, *newSoln ); 
	}
      }
    }
    else {
      newSoln = curX_;
    }
    return newSoln;
  }
  

  template <class ScalarType, class MV, class OP>
  bool LinearProblem<ScalarType,MV,OP>::setProblem( const RCP<MV> &newX, const RCP<const MV> &newB )
  {
    // Create timers if the haven't been created yet.
    if (timerOp_ == Teuchos::null) {
      std::string opLabel = label_ + ": Operation Op*x";
      timerOp_ = Teuchos::TimeMonitor::getNewTimer( opLabel );
    }
    if (timerPrec_ == Teuchos::null) {
      std::string precLabel = label_ + ": Operation Prec*x";
      timerPrec_ = Teuchos::TimeMonitor::getNewTimer( precLabel );
    }

    // Set the linear system using the arguments newX and newB
    if (newX != null)
      X_ = newX;
    if (newB != null)
      B_ = newB;

    // Invalidate the current linear system indices and multivectors.
    rhsIndex_.resize(0);
    curX_ = null;
    curB_ = null;

    // Check the validity of the linear problem object.
    // If no operator A exists, then throw an std::exception.
    if (A_ == null || X_ == null || B_ == null) {
      isSet_ = false;
      return isSet_;
    }

    // Initialize the state booleans
    solutionUpdated_ = false;
    
    // Compute the initial residuals.
    if (R0_==null || MVT::GetNumberVecs( *R0_ )!=MVT::GetNumberVecs( *X_ )) {
      R0_ = MVT::Clone( *X_, MVT::GetNumberVecs( *X_ ) );
    }
    computeCurrResVec( &*R0_, &*X_, &*B_ );

    if (LP_!=null) {
      if (PR0_==null || MVT::GetNumberVecs( *PR0_ )!=MVT::GetNumberVecs( *X_ )) {
        PR0_ = MVT::Clone( *X_, MVT::GetNumberVecs( *X_ ) );
      }
      {
        Teuchos::TimeMonitor PrecTimer(*timerPrec_);
        OPT::Apply( *LP_, *R0_, *PR0_ );
      }
    } 
    else {
      PR0_ = R0_;
    }    

    // The problem has been set and is ready for use.
    isSet_ = true;
    
    // Return isSet.
    return isSet_;
  }
  
  template <class ScalarType, class MV, class OP>
  RCP<MV> LinearProblem<ScalarType,MV,OP>::getCurrLHSVec()
  {
    if (isSet_) {
      return curX_;
    }
    else {
      return Teuchos::null;
    }
  }
  
  template <class ScalarType, class MV, class OP>
  RCP<MV> LinearProblem<ScalarType,MV,OP>::getCurrRHSVec()
  {
    if (isSet_) {
      return curB_;
    }
    else {
      return Teuchos::null;
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::apply( const MV& x, MV& y ) const
  {
    RCP<MV> ytemp = MVT::Clone( y, MVT::GetNumberVecs( y ) );
    bool leftPrec = LP_!=null;
    bool rightPrec = RP_!=null;
    //
    // No preconditioning.
    // 
    if (!leftPrec && !rightPrec){ 
      Teuchos::TimeMonitor OpTimer(*timerOp_);
      OPT::Apply( *A_, x, y );
    }
    //
    // Preconditioning is being done on both sides
    //
    else if( leftPrec && rightPrec ) 
      {
        {
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	  OPT::Apply( *RP_, x, y );   
        }
        {
          Teuchos::TimeMonitor OpTimer(*timerOp_);
	  OPT::Apply( *A_, y, *ytemp );
        }
        {
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	  OPT::Apply( *LP_, *ytemp, y );
        }
      }
    //
    // Preconditioning is only being done on the left side
    //
    else if( leftPrec ) 
      {
        {
          Teuchos::TimeMonitor OpTimer(*timerOp_);
	  OPT::Apply( *A_, x, *ytemp );
        }
        {
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	  OPT::Apply( *LP_, *ytemp, y );
        }
      }
    //
    // Preconditioning is only being done on the right side
    //
    else 
      {
        {
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	  OPT::Apply( *RP_, x, *ytemp );
        }
        {
          Teuchos::TimeMonitor OpTimer(*timerOp_);
      	  OPT::Apply( *A_, *ytemp, y );
        }
      }  
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::applyOp( const MV& x, MV& y ) const {
    if (A_.get()) {
      Teuchos::TimeMonitor OpTimer(*timerOp_);
      OPT::Apply( *A_,x, y);   
    }
    else {
      MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x, 
		    Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::applyLeftPrec( const MV& x, MV& y ) const {
    if (LP_!=null) {
      Teuchos::TimeMonitor PrecTimer(*timerPrec_);
      return ( OPT::Apply( *LP_,x, y) );
    }
    else {
      MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x, 
		    Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::applyRightPrec( const MV& x, MV& y ) const {
    if (RP_!=null) {
      Teuchos::TimeMonitor PrecTimer(*timerPrec_);
      return ( OPT::Apply( *RP_,x, y) );
    }
    else {
      MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x, 
		    Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::computeCurrPrecResVec( MV* R, const MV* X, const MV* B ) const {

    if (R) {
      if (X && B) // The entries are specified, so compute the residual of Op(A)X = B
	{
	  if (LP_!=null)
	    {
	      RCP<MV> R_temp = MVT::Clone( *X, MVT::GetNumberVecs( *X ) );
              {
                Teuchos::TimeMonitor OpTimer(*timerOp_);
	        OPT::Apply( *A_, *X, *R_temp );
              }
	      MVT::MvAddMv( -1.0, *R_temp, 1.0, *B, *R_temp );
              {
                Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	        OPT::Apply( *LP_, *R_temp, *R );
              }
	    }
	  else 
	    {
              {
                Teuchos::TimeMonitor OpTimer(*timerOp_);
	        OPT::Apply( *A_, *X, *R );
              }
	      MVT::MvAddMv( -1.0, *R, 1.0, *B, *R );
	    }
	}
      else { 
	// The solution and right-hand side may not be specified, check and use which ones exist.
	RCP<const MV> localB, localX;
	if (B)
	  localB = rcp( B, false );
	else
	  localB = curB_;
	
	if (X)
	  localX = rcp( X, false );
	else
	  localX = curX_;
	
	if (LP_!=null)
	  {
	    RCP<MV> R_temp = MVT::Clone( *localX, MVT::GetNumberVecs( *localX ) );
            {
              Teuchos::TimeMonitor OpTimer(*timerOp_);
	      OPT::Apply( *A_, *localX, *R_temp );
            }
	    MVT::MvAddMv( -1.0, *R_temp, 1.0, *localB, *R_temp );
            {
              Teuchos::TimeMonitor PrecTimer(*timerPrec_);
	      OPT::Apply( *LP_, *R_temp, *R );
            }
	  }
	else 
	  {
            {
              Teuchos::TimeMonitor OpTimer(*timerOp_);
  	      OPT::Apply( *A_, *localX, *R );
            }
	    MVT::MvAddMv( -1.0, *R, 1.0, *localB, *R );
	  }
      }    
    } 
  }
  
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::computeCurrResVec( MV* R, const MV* X, const MV* B ) const {

    if (R) {
      if (X && B) // The entries are specified, so compute the residual of Op(A)X = B
	{
          {
            Teuchos::TimeMonitor OpTimer(*timerOp_);
	    OPT::Apply( *A_, *X, *R );
          }
	  MVT::MvAddMv( -1.0, *R, 1.0, *B, *R );
	}
      else { 
	// The solution and right-hand side may not be specified, check and use which ones exist.
	RCP<const MV> localB, localX;
	if (B)
	  localB = rcp( B, false );
	else
	  localB = curB_;
	
	if (X)
	  localX = rcp( X, false );
	else
	  localX = curX_;
	  
        {
          Teuchos::TimeMonitor OpTimer(*timerOp_);
	  OPT::Apply( *A_, *localX, *R );
        }
	MVT::MvAddMv( -1.0, *R, 1.0, *localB, *R );
      }    
    }
  }
  
} // end Belos namespace

#endif /* BELOS_LINEAR_PROBLEM_HPP */