/usr/include/trilinos/BelosGmresPolySolMgr.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 | // @HEADER
// ***********************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef BELOS_GMRES_POLY_SOLMGR_HPP
#define BELOS_GMRES_POLY_SOLMGR_HPP
/*! \file BelosGmresPolySolMgr.hpp
* \brief The Belos::GmresPolySolMgr provides a solver manager for the hybrid block GMRES linear solver.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"
#include "BelosGmresPolyOp.hpp"
#include "BelosGmresIteration.hpp"
#include "BelosBlockGmresIter.hpp"
#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestImpResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_TimeMonitor.hpp"
/** \example epetra/example/BlockGmres/BlockGmresPolyEpetraExFile.cpp
This is an example of how to use the Belos::GmresPolySolMgr solver manager.
*/
/*! \class Belos::GmresPolySolMgr
*
* \brief The Belos::GmresPolySolMgr provides a powerful and fully-featured solver manager over the hybrid block GMRES linear solver.
\ingroup belos_solver_framework
\author Heidi Thornquist
*/
namespace Belos {
//! @name GmresPolySolMgr Exceptions
//@{
/** \brief GmresPolySolMgrLinearProblemFailure is thrown when the linear problem is
* not setup (i.e. setProblem() was not called) when solve() is called.
*
* This std::exception is thrown from the GmresPolySolMgr::solve() method.
*
*/
class GmresPolySolMgrLinearProblemFailure : public BelosError {public:
GmresPolySolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief GmresPolySolMgrPolynomialFailure is thrown when their is a problem generating
* the GMRES polynomial for this linear problem.
*
* This std::exception is thrown from the GmresPolySolMgr::solve() method.
*
*/
class GmresPolySolMgrPolynomialFailure : public BelosError {public:
GmresPolySolMgrPolynomialFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief GmresPolySolMgrOrthoFailure is thrown when the orthogonalization manager is
* unable to generate orthonormal columns from the initial basis vectors.
*
* This std::exception is thrown from the GmresPolySolMgr::solve() method.
*
*/
class GmresPolySolMgrOrthoFailure : public BelosError {public:
GmresPolySolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
template<class ScalarType, class MV, class OP>
class GmresPolySolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors/Destructor
//@{
/*! \brief Empty constructor for GmresPolySolMgr.
* This constructor takes no arguments and sets the default values for the solver.
* The linear problem must be passed in using setProblem() before solve() is called on this object.
* The solver values can be changed using setParameters().
*/
GmresPolySolMgr();
/*! \brief Basic constructor for GmresPolySolMgr.
*
* This constructor accepts the LinearProblem to be solved in addition
* to a parameter list of options for the solver manager. These options include the following:
* - "Block Size" - a \c int specifying the block size to be used by the underlying block GMRES solver. Default: 1
* - "Num Blocks" - a \c int specifying the number of blocks allocated for the Krylov basis. Default: 300
* - "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform. Default: 1000
* - "Maximum Restarts" - a \c int specifying the maximum number of restarts the underlying solver is allowed to perform. Default: 20
* - "Orthogonalization" - a \c std::string specifying the desired orthogonalization: DGKS, ICGS, and IMGS. Default: "DGKS"
* - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
* - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
* - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: 1e-8
*/
GmresPolySolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl );
//! Destructor.
virtual ~GmresPolySolMgr() {};
//@}
//! @name Accessor methods
//@{
/*! \brief Get current linear problem being solved for in this object.
*/
const LinearProblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
/*! \brief Get a parameter list containing the valid parameters for this object.
*/
Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;
/*! \brief Get a parameter list containing the current parameters for this object.
*/
Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return tuple(timerSolve_, timerPoly_);
}
//! Get the iteration count for the most recent call to \c solve().
int getNumIters() const {
return numIters_;
}
/*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve.
\note This flag will be reset the next time solve() is called.
*/
bool isLOADetected() const { return loaDetected_; }
//@}
//! @name Set methods
//@{
//! Set the linear problem that needs to be solved.
void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; isSTSet_ = false; }
//! Set the parameters the solver manager should use to solve the linear problem.
void setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms );
//@}
//! @name Reset methods
//@{
/*! \brief Performs a reset of the solver manager specified by the \c ResetType. This informs the
* solver manager that the solver should prepare for the next call to solve by resetting certain elements
* of the iterative solver strategy.
*/
void reset( const ResetType type ) {
if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) {
problem_->setProblem();
isPolyBuilt_ = false; // Rebuild the GMRES polynomial
}
}
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying linear solver's iterate() routine
* until the problem has been solved (as decided by the solver manager) or the solver manager decides to
* quit.
*
* This method calls BlockGmresIter::iterate(), which will return either because a specially constructed status test evaluates to
* ::Passed or an std::exception is thrown.
*
* A return from BlockGmresIter::iterate() signifies one of the following scenarios:
* - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
* will be placed in the linear problem and return ::Unconverged.
* - global convergence has been met. In this case, the current solutions to the linear system will be placed in the linear
* problem and the solver manager will return ::Converged
*
* \returns ::ReturnType specifying:
* - ::Converged: the linear problem was solved to the specification required by the solver manager.
* - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//@}
/** \name Overridden from Teuchos::Describable */
//@{
/** \brief Method to return description of the hybrid block GMRES solver manager */
std::string description() const;
//@}
private:
// Method to convert std::string to enumerated type for residual.
Belos::ScaleType convertStringToScaleType( std::string& scaleType ) {
if (scaleType == "Norm of Initial Residual") {
return Belos::NormOfInitRes;
} else if (scaleType == "Norm of Preconditioned Initial Residual") {
return Belos::NormOfPrecInitRes;
} else if (scaleType == "Norm of RHS") {
return Belos::NormOfRHS;
} else if (scaleType == "None") {
return Belos::None;
} else
TEST_FOR_EXCEPTION( true ,std::logic_error,
"Belos::GmresPolySolMgr(): Invalid residual scaling type.");
}
// Method for checking current status test against defined linear problem.
bool checkStatusTest();
// Method for generating GMRES polynomial.
bool generatePoly();
// Linear problem.
Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
// Output manager.
Teuchos::RCP<OutputManager<ScalarType> > printer_;
Teuchos::RCP<std::ostream> outputStream_;
// Status test.
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convTest_;
Teuchos::RCP<StatusTestResNorm<ScalarType,MV,OP> > expConvTest_, impConvTest_;
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;
// Orthogonalization manager.
Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;
// Current parameter list.
Teuchos::RCP<ParameterList> params_;
// Default solver values.
static const MagnitudeType polytol_default_;
static const MagnitudeType convtol_default_;
static const MagnitudeType orthoKappa_default_;
static const int maxDegree_default_;
static const int maxRestarts_default_;
static const int maxIters_default_;
static const bool strictConvTol_default_;
static const bool showMaxResNormOnly_default_;
static const int blockSize_default_;
static const int numBlocks_default_;
static const int verbosity_default_;
static const int outputStyle_default_;
static const int outputFreq_default_;
static const std::string impResScale_default_;
static const std::string expResScale_default_;
static const std::string label_default_;
static const std::string orthoType_default_;
static const Teuchos::RCP<std::ostream> outputStream_default_;
// Current solver values.
MagnitudeType polytol_, convtol_, orthoKappa_;
int maxDegree_, maxRestarts_, maxIters_, numIters_;
int blockSize_, numBlocks_, verbosity_, outputStyle_, outputFreq_;
bool strictConvTol_, showMaxResNormOnly_;
std::string orthoType_;
std::string impResScale_, expResScale_;
// Polynomial storage
int poly_dim_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int, ScalarType> > poly_H_, poly_y_;
Teuchos::RCP<Teuchos::SerialDenseVector<int, ScalarType> > poly_r0_;
Teuchos::RCP<Belos::GmresPolyOp<ScalarType, MV, OP> > poly_Op_;
// Timers.
std::string label_;
Teuchos::RCP<Teuchos::Time> timerSolve_, timerPoly_;
// Internal state variables.
bool isPolyBuilt_;
bool isSet_, isSTSet_, expResTest_;
bool loaDetected_;
};
// Default solver values.
template<class ScalarType, class MV, class OP>
const typename GmresPolySolMgr<ScalarType,MV,OP>::MagnitudeType GmresPolySolMgr<ScalarType,MV,OP>::polytol_default_ = 1e-12;
template<class ScalarType, class MV, class OP>
const typename GmresPolySolMgr<ScalarType,MV,OP>::MagnitudeType GmresPolySolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;
template<class ScalarType, class MV, class OP>
const typename GmresPolySolMgr<ScalarType,MV,OP>::MagnitudeType GmresPolySolMgr<ScalarType,MV,OP>::orthoKappa_default_ = -1.0;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::maxDegree_default_ = 25;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::maxRestarts_default_ = 20;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;
template<class ScalarType, class MV, class OP>
const bool GmresPolySolMgr<ScalarType,MV,OP>::strictConvTol_default_ = false;
template<class ScalarType, class MV, class OP>
const bool GmresPolySolMgr<ScalarType,MV,OP>::showMaxResNormOnly_default_ = false;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::blockSize_default_ = 1;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::numBlocks_default_ = 300;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;
template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;
template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::impResScale_default_ = "Norm of RHS";
template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::expResScale_default_ = "Norm of RHS";
template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::label_default_ = "Belos";
template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::orthoType_default_ = "DGKS";
template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> GmresPolySolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);
// Empty Constructor
template<class ScalarType, class MV, class OP>
GmresPolySolMgr<ScalarType,MV,OP>::GmresPolySolMgr() :
outputStream_(outputStream_default_),
polytol_(polytol_default_),
convtol_(convtol_default_),
orthoKappa_(orthoKappa_default_),
maxDegree_(maxDegree_default_),
maxRestarts_(maxRestarts_default_),
maxIters_(maxIters_default_),
blockSize_(blockSize_default_),
numBlocks_(numBlocks_default_),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
strictConvTol_(strictConvTol_default_),
showMaxResNormOnly_(showMaxResNormOnly_default_),
orthoType_(orthoType_default_),
impResScale_(impResScale_default_),
expResScale_(expResScale_default_),
label_(label_default_),
isPolyBuilt_(false),
isSet_(false),
isSTSet_(false),
expResTest_(false),
loaDetected_(false)
{}
// Basic Constructor
template<class ScalarType, class MV, class OP>
GmresPolySolMgr<ScalarType,MV,OP>::GmresPolySolMgr(
const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl ) :
problem_(problem),
outputStream_(outputStream_default_),
polytol_(polytol_default_),
convtol_(convtol_default_),
orthoKappa_(orthoKappa_default_),
maxDegree_(maxDegree_default_),
maxRestarts_(maxRestarts_default_),
maxIters_(maxIters_default_),
blockSize_(blockSize_default_),
numBlocks_(numBlocks_default_),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
strictConvTol_(strictConvTol_default_),
showMaxResNormOnly_(showMaxResNormOnly_default_),
orthoType_(orthoType_default_),
impResScale_(impResScale_default_),
expResScale_(expResScale_default_),
label_(label_default_),
isPolyBuilt_(false),
isSet_(false),
isSTSet_(false),
expResTest_(false),
loaDetected_(false)
{
TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
// If the parameter list pointer is null, then set the current parameters to the default parameter list.
if ( !is_null(pl) ) {
setParameters( pl );
}
}
template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
GmresPolySolMgr<ScalarType,MV,OP>::getValidParameters() const
{
static Teuchos::RCP<const Teuchos::ParameterList> validPL;
if (is_null(validPL)) {
Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
pl->set("Polynomial Tolerance", polytol_default_,
"The relative residual tolerance that used to construct the GMRES polynomial.");
pl->set("Maximum Degree", maxDegree_default_,
"The maximum degree allowed for any GMRES polynomial.");
pl->set("Convergence Tolerance", convtol_default_,
"The relative residual tolerance that needs to be achieved by the\n"
"iterative solver in order for the linear system to be declared converged." );
pl->set("Maximum Restarts", maxRestarts_default_,
"The maximum number of restarts allowed for each\n"
"set of RHS solved.");
pl->set("Maximum Iterations", maxIters_default_,
"The maximum number of block iterations allowed for each\n"
"set of RHS solved.");
pl->set("Num Blocks", numBlocks_default_,
"The maximum number of blocks allowed in the Krylov subspace\n"
"for each set of RHS solved.");
pl->set("Block Size", blockSize_default_,
"The number of vectors in each block. This number times the\n"
"number of blocks is the total Krylov subspace dimension.");
pl->set("Verbosity", verbosity_default_,
"What type(s) of solver information should be outputted\n"
"to the output stream.");
pl->set("Output Style", outputStyle_default_,
"What style is used for the solver information outputted\n"
"to the output stream.");
pl->set("Output Frequency", outputFreq_default_,
"How often convergence information should be outputted\n"
"to the output stream.");
pl->set("Output Stream", outputStream_default_,
"A reference-counted pointer to the output stream where all\n"
"solver output is sent.");
pl->set("Strict Convergence", strictConvTol_default_,
"After polynomial is applied, whether solver should try to achieve\n"
"the relative residual tolerance.");
pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
"When convergence information is printed, only show the maximum\n"
"relative residual norm when the block size is greater than one.");
pl->set("Implicit Residual Scaling", impResScale_default_,
"The type of scaling used in the implicit residual convergence test.");
pl->set("Explicit Residual Scaling", expResScale_default_,
"The type of scaling used in the explicit residual convergence test.");
pl->set("Timer Label", label_default_,
"The string to use as a prefix for the timer labels.");
// pl->set("Restart Timers", restartTimers_);
pl->set("Orthogonalization", orthoType_default_,
"The type of orthogonalization to use: DGKS, ICGS, or IMGS.");
pl->set("Orthogonalization Constant",orthoKappa_default_,
"The constant used by DGKS orthogonalization to determine\n"
"whether another step of classical Gram-Schmidt is necessary.");
validPL = pl;
}
return validPL;
}
template<class ScalarType, class MV, class OP>
void GmresPolySolMgr<ScalarType,MV,OP>::setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms )
{
// Create the internal parameter list if ones doesn't already exist.
if (params_ == Teuchos::null) {
params_ = Teuchos::rcp( new Teuchos::ParameterList(*getValidParameters()) );
}
else {
params->validateParameters(*getValidParameters());
}
// Check for maximum polynomial degree
if (params->isParameter("Maximum Degree")) {
maxDegree_ = params->get("Maximum Degree",maxDegree_default_);
// Update parameter in our list.
params_->set("Maximum Degree", maxDegree_);
}
// Check for maximum number of restarts
if (params->isParameter("Maximum Restarts")) {
maxRestarts_ = params->get("Maximum Restarts",maxRestarts_default_);
// Update parameter in our list.
params_->set("Maximum Restarts", maxRestarts_);
}
// Check for maximum number of iterations
if (params->isParameter("Maximum Iterations")) {
maxIters_ = params->get("Maximum Iterations",maxIters_default_);
// Update parameter in our list and in status test.
params_->set("Maximum Iterations", maxIters_);
if (maxIterTest_!=Teuchos::null)
maxIterTest_->setMaxIters( maxIters_ );
}
// Check for blocksize
if (params->isParameter("Block Size")) {
blockSize_ = params->get("Block Size",blockSize_default_);
TEST_FOR_EXCEPTION(blockSize_ <= 0, std::invalid_argument,
"Belos::GmresPolySolMgr: \"Block Size\" must be strictly positive.");
// Update parameter in our list.
params_->set("Block Size", blockSize_);
}
// Check for the maximum number of blocks.
if (params->isParameter("Num Blocks")) {
numBlocks_ = params->get("Num Blocks",numBlocks_default_);
TEST_FOR_EXCEPTION(numBlocks_ <= 0, std::invalid_argument,
"Belos::GmresPolySolMgr: \"Num Blocks\" must be strictly positive.");
// Update parameter in our list.
params_->set("Num Blocks", numBlocks_);
}
// Check to see if the timer label changed.
if (params->isParameter("Timer Label")) {
std::string tempLabel = params->get("Timer Label", label_default_);
// Update parameter in our list and solver timer
if (tempLabel != label_) {
label_ = tempLabel;
params_->set("Timer Label", label_);
std::string solveLabel = label_ + ": GmresPolySolMgr total solve time";
timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);
std::string polyLabel = label_ + ": GmresPolySolMgr polynomial creation time";
timerPoly_ = Teuchos::TimeMonitor::getNewTimer(polyLabel);
}
}
// Check if the orthogonalization changed.
if (params->isParameter("Orthogonalization")) {
std::string tempOrthoType = params->get("Orthogonalization",orthoType_default_);
TEST_FOR_EXCEPTION( tempOrthoType != "DGKS" && tempOrthoType != "ICGS" && tempOrthoType != "IMGS",
std::invalid_argument,
"Belos::GmresPolySolMgr: \"Orthogonalization\" must be either \"DGKS\", \"ICGS\", or \"IMGS\".");
if (tempOrthoType != orthoType_) {
orthoType_ = tempOrthoType;
// Create orthogonalization manager
if (orthoType_=="DGKS") {
if (orthoKappa_ <= 0) {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
}
}
else if (orthoType_=="ICGS") {
ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else if (orthoType_=="IMGS") {
ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
}
}
// Check which orthogonalization constant to use.
if (params->isParameter("Orthogonalization Constant")) {
orthoKappa_ = params->get("Orthogonalization Constant",orthoKappa_default_);
// Update parameter in our list.
params_->set("Orthogonalization Constant",orthoKappa_);
if (orthoType_=="DGKS") {
if (orthoKappa_ > 0 && ortho_ != Teuchos::null) {
Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
}
}
}
// Check for a change in verbosity level
if (params->isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
verbosity_ = params->get("Verbosity", verbosity_default_);
} else {
verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
}
// Update parameter in our list.
params_->set("Verbosity", verbosity_);
if (printer_ != Teuchos::null)
printer_->setVerbosity(verbosity_);
}
// Check for a change in output style
if (params->isParameter("Output Style")) {
if (Teuchos::isParameterType<int>(*params,"Output Style")) {
outputStyle_ = params->get("Output Style", outputStyle_default_);
} else {
outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
}
// Reconstruct the convergence test if the explicit residual test is not being used.
params_->set("Output Style", outputStyle_);
if (outputTest_ != Teuchos::null) {
isSTSet_ = false;
}
}
// output stream
if (params->isParameter("Output Stream")) {
outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");
// Update parameter in our list.
params_->set("Output Stream", outputStream_);
if (printer_ != Teuchos::null)
printer_->setOStream( outputStream_ );
}
// frequency level
if (verbosity_ & Belos::StatusTestDetails) {
if (params->isParameter("Output Frequency")) {
outputFreq_ = params->get("Output Frequency", outputFreq_default_);
}
// Update parameter in out list and output status test.
params_->set("Output Frequency", outputFreq_);
if (outputTest_ != Teuchos::null)
outputTest_->setOutputFrequency( outputFreq_ );
}
// Create output manager if we need to.
if (printer_ == Teuchos::null) {
printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
}
// Convergence
typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;
typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP> StatusTestResNorm_t;
// Check for polynomial convergence tolerance
if (params->isParameter("Polynomial Tolerance")) {
polytol_ = params->get("Polynomial Tolerance",polytol_default_);
// Update parameter in our list and residual tests.
params_->set("Polynomial Tolerance", polytol_);
}
// Check for convergence tolerance
if (params->isParameter("Convergence Tolerance")) {
convtol_ = params->get("Convergence Tolerance",convtol_default_);
// Update parameter in our list and residual tests.
params_->set("Convergence Tolerance", convtol_);
if (impConvTest_ != Teuchos::null)
impConvTest_->setTolerance( convtol_ );
if (expConvTest_ != Teuchos::null)
expConvTest_->setTolerance( convtol_ );
}
// Check if user requires solver to reach convergence tolerance
if (params->isParameter("Strict Convergence")) {
strictConvTol_ = params->get("Strict Convergence",strictConvTol_default_);
// Update parameter in our list and residual tests
params_->set("Strict Convergence", strictConvTol_);
}
// Check for a change in scaling, if so we need to build new residual tests.
if (params->isParameter("Implicit Residual Scaling")) {
std::string tempImpResScale = Teuchos::getParameter<std::string>( *params, "Implicit Residual Scaling" );
// Only update the scaling if it's different.
if (impResScale_ != tempImpResScale) {
Belos::ScaleType impResScaleType = convertStringToScaleType( tempImpResScale );
impResScale_ = tempImpResScale;
// Update parameter in our list and residual tests
params_->set("Implicit Residual Scaling", impResScale_);
if (impConvTest_ != Teuchos::null) {
try {
impConvTest_->defineScaleForm( impResScaleType, Belos::TwoNorm );
}
catch (std::exception& e) {
// Make sure the convergence test gets constructed again.
isSTSet_ = false;
}
}
}
}
if (params->isParameter("Explicit Residual Scaling")) {
std::string tempExpResScale = Teuchos::getParameter<std::string>( *params, "Explicit Residual Scaling" );
// Only update the scaling if it's different.
if (expResScale_ != tempExpResScale) {
Belos::ScaleType expResScaleType = convertStringToScaleType( tempExpResScale );
expResScale_ = tempExpResScale;
// Update parameter in our list and residual tests
params_->set("Explicit Residual Scaling", expResScale_);
if (expConvTest_ != Teuchos::null) {
try {
expConvTest_->defineScaleForm( expResScaleType, Belos::TwoNorm );
}
catch (std::exception& e) {
// Make sure the convergence test gets constructed again.
isSTSet_ = false;
}
}
}
}
if (params->isParameter("Show Maximum Residual Norm Only")) {
showMaxResNormOnly_ = Teuchos::getParameter<bool>(*params,"Show Maximum Residual Norm Only");
// Update parameter in our list and residual tests
params_->set("Show Maximum Residual Norm Only", showMaxResNormOnly_);
if (impConvTest_ != Teuchos::null)
impConvTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
if (expConvTest_ != Teuchos::null)
expConvTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
}
// Create orthogonalization manager if we need to.
if (ortho_ == Teuchos::null) {
if (orthoType_=="DGKS") {
if (orthoKappa_ <= 0) {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else {
ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
}
}
else if (orthoType_=="ICGS") {
ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else if (orthoType_=="IMGS") {
ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
}
else {
TEST_FOR_EXCEPTION(orthoType_!="ICGS"&&orthoType_!="DGKS"&&orthoType_!="IMGS",std::logic_error,
"Belos::GmresPolySolMgr(): Invalid orthogonalization type.");
}
}
// Create the timers if we need to.
if (timerSolve_ == Teuchos::null) {
std::string solveLabel = label_ + ": GmresPolySolMgr total solve time";
timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);
}
if (timerPoly_ == Teuchos::null) {
std::string polyLabel = label_ + ": GmresPolySolMgr polynomial creation time";
timerPoly_ = Teuchos::TimeMonitor::getNewTimer(polyLabel);
}
// Inform the solver manager that the current parameters were set.
isSet_ = true;
}
// Check the status test versus the defined linear problem
template<class ScalarType, class MV, class OP>
bool GmresPolySolMgr<ScalarType,MV,OP>::checkStatusTest() {
typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;
typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP> StatusTestGenResNorm_t;
typedef Belos::StatusTestImpResNorm<ScalarType,MV,OP> StatusTestImpResNorm_t;
// Basic test checks maximum iterations and native residual.
maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );
// If there is a left preconditioner, we create a combined status test that checks the implicit
// and then explicit residual norm to see if we have convergence.
if (!Teuchos::is_null(problem_->getLeftPrec())) {
expResTest_ = true;
}
if (expResTest_) {
// Implicit residual test, using the native residual to determine if convergence was achieved.
Teuchos::RCP<StatusTestGenResNorm_t> tmpImpConvTest =
Teuchos::rcp( new StatusTestGenResNorm_t( convtol_ ) );
tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
impConvTest_ = tmpImpConvTest;
// Explicit residual test once the native residual is below the tolerance
Teuchos::RCP<StatusTestGenResNorm_t> tmpExpConvTest =
Teuchos::rcp( new StatusTestGenResNorm_t( convtol_ ) );
tmpExpConvTest->defineResForm( StatusTestGenResNorm_t::Explicit, Belos::TwoNorm );
tmpExpConvTest->defineScaleForm( convertStringToScaleType(expResScale_), Belos::TwoNorm );
tmpExpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
expConvTest_ = tmpExpConvTest;
// The convergence test is a combination of the "cheap" implicit test and explicit test.
convTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::SEQ, impConvTest_, expConvTest_ ) );
}
else {
// Implicit residual test, using the native residual to determine if convergence was achieved.
// Use test that checks for loss of accuracy.
Teuchos::RCP<StatusTestImpResNorm_t> tmpImpConvTest =
Teuchos::rcp( new StatusTestImpResNorm_t( convtol_ ) );
tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
impConvTest_ = tmpImpConvTest;
// Set the explicit and total convergence test to this implicit test that checks for accuracy loss.
expConvTest_ = impConvTest_;
convTest_ = impConvTest_;
}
sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );
// Create the status test output class.
// This class manages and formats the output from the status test.
StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );
// Set the solver string for the output test
std::string solverDesc = " Gmres Polynomial ";
outputTest_->setSolverDesc( solverDesc );
// The status test is now set.
isSTSet_ = true;
return false;
}
template<class ScalarType, class MV, class OP>
bool GmresPolySolMgr<ScalarType,MV,OP>::generatePoly()
{
// Create a copy of the linear problem that has a zero initial guess and random RHS.
Teuchos::RCP<MV> newX = MVT::Clone( *(problem_->getLHS()), 1 );
Teuchos::RCP<MV> newB = MVT::Clone( *(problem_->getRHS()), 1 );
MVT::MvInit( *newX, SCT::zero() );
MVT::MvRandom( *newB );
Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > newProblem =
Teuchos::rcp( new LinearProblem<ScalarType,MV,OP>( problem_->getOperator(), newX, newB ) );
newProblem->setLeftPrec( problem_->getLeftPrec() );
newProblem->setRightPrec( problem_->getRightPrec() );
newProblem->setLabel("Belos GMRES Poly Generation");
newProblem->setProblem();
std::vector<int> idx(1,0); // Must set the index to be the first vector (0)!
newProblem->setLSIndex( idx );
// Create a parameter list for the GMRES iteration.
Teuchos::ParameterList polyList;
// Tell the block solver that the block size is one.
polyList.set("Num Blocks",maxDegree_);
polyList.set("Block Size",1);
polyList.set("Keep Hessenberg", true);
// Create a simple status test that either reaches the relative residual tolerance or maximum polynomial size.
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxItrTst =
Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxDegree_ ) );
// Implicit residual test, using the native residual to determine if convergence was achieved.
Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTst =
Teuchos::rcp( new StatusTestGenResNorm<ScalarType,MV,OP>( polytol_ ) );
convTst->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
// Convergence test that stops the iteration when either are satisfied.
Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > polyTest =
Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>( StatusTestCombo<ScalarType,MV,OP>::OR, maxItrTst, convTst ) );
// Create Gmres iteration object to perform one cycle of Gmres.
Teuchos::RCP<BlockGmresIter<ScalarType,MV,OP> > gmres_iter;
gmres_iter = Teuchos::rcp( new BlockGmresIter<ScalarType,MV,OP>(newProblem,printer_,polyTest,ortho_,polyList) );
// Create the first block in the current Krylov basis (residual).
Teuchos::RCP<MV> V_0 = MVT::Clone( *(newProblem->getRHS()), 1 );
newProblem->computeCurrPrecResVec( &*V_0 );
// Get a matrix to hold the orthonormalization coefficients.
poly_r0_ = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>(1) );
// Orthonormalize the new V_0
int rank = ortho_->normalize( *V_0, poly_r0_ );
TEST_FOR_EXCEPTION(rank != 1,GmresPolySolMgrOrthoFailure,
"Belos::GmresPolySolMgr::generatePoly(): Failed to compute initial block of orthonormal vectors for polynomial generation.");
// Set the new state and initialize the solver.
GmresIterationState<ScalarType,MV> newstate;
newstate.V = V_0;
newstate.z = poly_r0_;
newstate.curDim = 0;
gmres_iter->initializeGmres(newstate);
// Perform Gmres iteration
bool polyConverged = false;
try {
gmres_iter->iterate();
// Check convergence first
if ( convTst->getStatus() == Passed ) {
// we have convergence
polyConverged = true;
}
}
catch (GmresIterationOrthoFailure e) {
// Try to recover the most recent least-squares solution
gmres_iter->updateLSQR( gmres_iter->getCurSubspaceDim() );
// Check to see if the most recent least-squares solution yielded convergence.
polyTest->checkStatus( &*gmres_iter );
if (convTst->getStatus() == Passed)
polyConverged = true;
}
catch (std::exception e) {
printer_->stream(Errors) << "Error! Caught exception in BlockGmresIter::iterate() at iteration "
<< gmres_iter->getNumIters() << std::endl
<< e.what() << std::endl;
throw;
}
// Get the solution for this polynomial, use in comparison below
Teuchos::RCP<MV> currX = gmres_iter->getCurrentUpdate();
// Record polynomial info, get current GMRES state
GmresIterationState<ScalarType,MV> gmresState = gmres_iter->getState();
// If the polynomial has no dimension, the tolerance is too low, return false
poly_dim_ = gmresState.curDim;
if (poly_dim_ == 0) {
return false;
}
//
// Make a view and then copy the RHS of the least squares problem.
//
poly_y_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *gmresState.z, poly_dim_, 1 ) );
poly_H_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( *gmresState.H ) );
//
// Solve the least squares problem.
//
const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
Teuchos::BLAS<int,ScalarType> blas;
blas.TRSM( Teuchos::LEFT_SIDE, Teuchos::UPPER_TRI, Teuchos::NO_TRANS,
Teuchos::NON_UNIT_DIAG, poly_dim_, 1, one,
gmresState.R->values(), gmresState.R->stride(),
poly_y_->values(), poly_y_->stride() );
//
// Generate the polynomial operator
//
poly_Op_ = Teuchos::rcp(
new Belos::GmresPolyOp<ScalarType,MV,OP>( problem_, poly_H_, poly_y_, poly_r0_ ) );
return true;
}
// solve()
template<class ScalarType, class MV, class OP>
ReturnType GmresPolySolMgr<ScalarType,MV,OP>::solve() {
// Set the current parameters if they were not set before.
// NOTE: This may occur if the user generated the solver manager with the default constructor and
// then didn't set any parameters using setParameters().
if (!isSet_) {
setParameters(Teuchos::parameterList(*getValidParameters()));
}
Teuchos::BLAS<int,ScalarType> blas;
Teuchos::LAPACK<int,ScalarType> lapack;
TEST_FOR_EXCEPTION(problem_ == Teuchos::null,GmresPolySolMgrLinearProblemFailure,
"Belos::GmresPolySolMgr::solve(): Linear problem is not a valid object.");
TEST_FOR_EXCEPTION(!problem_->isProblemSet(),GmresPolySolMgrLinearProblemFailure,
"Belos::GmresPolySolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");
if (!isSTSet_ || (!expResTest_ && !Teuchos::is_null(problem_->getLeftPrec())) ) {
TEST_FOR_EXCEPTION( checkStatusTest(),GmresPolySolMgrLinearProblemFailure,
"Belos::GmresPolySolMgr::solve(): Linear problem and requested status tests are incompatible.");
}
// If the GMRES polynomial has not been constructed for this matrix, preconditioner pair, generate it
if (!isPolyBuilt_) {
Teuchos::TimeMonitor slvtimer(*timerPoly_);
isPolyBuilt_ = generatePoly();
TEST_FOR_EXCEPTION( !isPolyBuilt_ && poly_dim_==0, GmresPolySolMgrPolynomialFailure,
"Belos::GmresPolySolMgr::generatePoly(): Failed to generate a non-trivial polynomial, reduce polynomial tolerance.");
TEST_FOR_EXCEPTION( !isPolyBuilt_, GmresPolySolMgrPolynomialFailure,
"Belos::GmresPolySolMgr::generatePoly(): Failed to generate polynomial that satisfied requirements.");
}
// Assume convergence is achieved if user does not require strict convergence.
bool isConverged = true;
// Solve the linear system using the polynomial
{
Teuchos::TimeMonitor slvtimer(*timerSolve_);
// Apply the polynomial to the current linear system
poly_Op_->Apply( *problem_->getRHS(), *problem_->getLHS() );
// Reset the problem to acknowledge the updated solution
problem_->setProblem();
// If we have to strictly adhere to the requested convergence tolerance, set up a standard GMRES solver.
if (strictConvTol_) {
// Create indices for the linear systems to be solved.
int startPtr = 0;
int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
int numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;
std::vector<int> currIdx;
// If an adaptive block size is allowed then only the linear systems that need to be solved are solved.
// Otherwise, the index set is generated that informs the linear problem that some linear systems are augmented.
currIdx.resize( blockSize_ );
for (int i=0; i<numCurrRHS; ++i)
{ currIdx[i] = startPtr+i; }
for (int i=numCurrRHS; i<blockSize_; ++i)
{ currIdx[i] = -1; }
// Inform the linear problem of the current linear system to solve.
problem_->setLSIndex( currIdx );
//////////////////////////////////////////////////////////////////////////////////////
// Parameter list
Teuchos::ParameterList plist;
plist.set("Block Size",blockSize_);
int dim = MVT::GetVecLength( *(problem_->getRHS()) );
if (blockSize_*numBlocks_ > dim) {
int tmpNumBlocks = 0;
if (blockSize_ == 1)
tmpNumBlocks = dim / blockSize_; // Allow for a good breakdown.
else
tmpNumBlocks = ( dim - blockSize_) / blockSize_; // Allow for restarting.
printer_->stream(Warnings) <<
"Warning! Requested Krylov subspace dimension is larger than operator dimension!" << std::endl <<
" The maximum number of blocks allowed for the Krylov subspace will be adjusted to " << tmpNumBlocks << std::endl;
plist.set("Num Blocks",tmpNumBlocks);
}
else
plist.set("Num Blocks",numBlocks_);
// Reset the status test.
outputTest_->reset();
loaDetected_ = false;
// Assume convergence is achieved, then let any failed convergence set this to false.
isConverged = true;
//////////////////////////////////////////////////////////////////////////////////////
// BlockGmres solver
Teuchos::RCP<GmresIteration<ScalarType,MV,OP> > block_gmres_iter;
block_gmres_iter = Teuchos::rcp( new BlockGmresIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,ortho_,plist) );
// Enter solve() iterations
while ( numRHS2Solve > 0 ) {
// Set the current number of blocks and blocksize with the Gmres iteration.
if (blockSize_*numBlocks_ > dim) {
int tmpNumBlocks = 0;
if (blockSize_ == 1)
tmpNumBlocks = dim / blockSize_; // Allow for a good breakdown.
else
tmpNumBlocks = ( dim - blockSize_) / blockSize_; // Allow for restarting.
block_gmres_iter->setSize( blockSize_, tmpNumBlocks );
}
else
block_gmres_iter->setSize( blockSize_, numBlocks_ );
// Reset the number of iterations.
block_gmres_iter->resetNumIters();
// Reset the number of calls that the status test output knows about.
outputTest_->resetNumCalls();
// Create the first block in the current Krylov basis.
Teuchos::RCP<MV> V_0;
V_0 = MVT::CloneCopy( *(problem_->getInitPrecResVec()), currIdx );
// Get a matrix to hold the orthonormalization coefficients.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > z_0 =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( blockSize_, blockSize_ ) );
// Orthonormalize the new V_0
int rank = ortho_->normalize( *V_0, z_0 );
TEST_FOR_EXCEPTION(rank != blockSize_,GmresPolySolMgrOrthoFailure,
"Belos::GmresPolySolMgr::solve(): Failed to compute initial block of orthonormal vectors.");
// Set the new state and initialize the solver.
GmresIterationState<ScalarType,MV> newstate;
newstate.V = V_0;
newstate.z = z_0;
newstate.curDim = 0;
block_gmres_iter->initializeGmres(newstate);
int numRestarts = 0;
while(1) {
// tell block_gmres_iter to iterate
try {
block_gmres_iter->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence first
//
////////////////////////////////////////////////////////////////////////////////////
if ( convTest_->getStatus() == Passed ) {
if ( expConvTest_->getLOADetected() ) {
// we don't have convergence
loaDetected_ = true;
isConverged = false;
}
break; // break from while(1){block_gmres_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for maximum iterations
//
////////////////////////////////////////////////////////////////////////////////////
else if ( maxIterTest_->getStatus() == Passed ) {
// we don't have convergence
isConverged = false;
break; // break from while(1){block_gmres_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for restarting, i.e. the subspace is full
//
////////////////////////////////////////////////////////////////////////////////////
else if ( block_gmres_iter->getCurSubspaceDim() == block_gmres_iter->getMaxSubspaceDim() ) {
if ( numRestarts >= maxRestarts_ ) {
isConverged = false;
break; // break from while(1){block_gmres_iter->iterate()}
}
numRestarts++;
printer_->stream(Debug) << " Performing restart number " << numRestarts << " of " << maxRestarts_ << std::endl << std::endl;
// Update the linear problem.
Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
problem_->updateSolution( update, true );
// Get the state.
GmresIterationState<ScalarType,MV> oldState = block_gmres_iter->getState();
// Compute the restart std::vector.
// Get a view of the current Krylov basis.
Teuchos::RCP<MV> V_0 = MVT::Clone( *(oldState.V), blockSize_ );
problem_->computeCurrPrecResVec( &*V_0 );
// Get a view of the first block of the Krylov basis.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > z_0 =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( blockSize_, blockSize_ ) );
// Orthonormalize the new V_0
int rank = ortho_->normalize( *V_0, z_0 );
TEST_FOR_EXCEPTION(rank != blockSize_,GmresPolySolMgrOrthoFailure,
"Belos::GmresPolySolMgr::solve(): Failed to compute initial block of orthonormal vectors after restart.");
// Set the new state and initialize the solver.
GmresIterationState<ScalarType,MV> newstate;
newstate.V = V_0;
newstate.z = z_0;
newstate.curDim = 0;
block_gmres_iter->initializeGmres(newstate);
} // end of restarting
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// something is wrong, and it is probably our fault.
//
////////////////////////////////////////////////////////////////////////////////////
else {
TEST_FOR_EXCEPTION(true,std::logic_error,
"Belos::GmresPolySolMgr::solve(): Invalid return from BlockGmresIter::iterate().");
}
}
catch (const GmresIterationOrthoFailure &e) {
// If the block size is not one, it's not considered a lucky breakdown.
if (blockSize_ != 1) {
printer_->stream(Errors) << "Error! Caught std::exception in BlockGmresIter::iterate() at iteration "
<< block_gmres_iter->getNumIters() << std::endl
<< e.what() << std::endl;
if (convTest_->getStatus() != Passed)
isConverged = false;
break;
}
else {
// If the block size is one, try to recover the most recent least-squares solution
block_gmres_iter->updateLSQR( block_gmres_iter->getCurSubspaceDim() );
// Check to see if the most recent least-squares solution yielded convergence.
sTest_->checkStatus( &*block_gmres_iter );
if (convTest_->getStatus() != Passed)
isConverged = false;
break;
}
}
catch (const std::exception &e) {
printer_->stream(Errors) << "Error! Caught std::exception in BlockGmresIter::iterate() at iteration "
<< block_gmres_iter->getNumIters() << std::endl
<< e.what() << std::endl;
throw;
}
}
// Compute the current solution.
// Update the linear problem.
// Attempt to get the current solution from the residual status test, if it has one.
if ( !Teuchos::is_null(expConvTest_->getSolution()) ) {
Teuchos::RCP<MV> newX = expConvTest_->getSolution();
Teuchos::RCP<MV> curX = problem_->getCurrLHSVec();
MVT::MvAddMv( 0.0, *newX, 1.0, *newX, *curX );
}
else {
Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
problem_->updateSolution( update, true );
}
// Inform the linear problem that we are finished with this block linear system.
problem_->setCurrLS();
// Update indices for the linear systems to be solved.
startPtr += numCurrRHS;
numRHS2Solve -= numCurrRHS;
if ( numRHS2Solve > 0 ) {
numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;
currIdx.resize( blockSize_ );
for (int i=0; i<numCurrRHS; ++i)
{ currIdx[i] = startPtr+i; }
for (int i=numCurrRHS; i<blockSize_; ++i)
{ currIdx[i] = -1; }
// Set the next indices.
problem_->setLSIndex( currIdx );
}
else {
currIdx.resize( numRHS2Solve );
}
}// while ( numRHS2Solve > 0 )
// print final summary
sTest_->print( printer_->stream(FinalSummary) );
} // if (strictConvTol_)
} // timing block
// print timing information
Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
if (!isConverged || loaDetected_) {
return Unconverged; // return from GmresPolySolMgr::solve()
}
return Converged; // return from GmresPolySolMgr::solve()
}
// This method requires the solver manager to return a std::string that describes itself.
template<class ScalarType, class MV, class OP>
std::string GmresPolySolMgr<ScalarType,MV,OP>::description() const
{
std::ostringstream oss;
oss << "Belos::GmresPolySolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";
oss << "{";
oss << "Ortho Type='"<<orthoType_<<"\', Block Size=" <<blockSize_;
oss << ", Num Blocks=" <<numBlocks_<< ", Max Restarts=" << maxRestarts_;
oss << "}";
return oss.str();
}
} // end Belos namespace
#endif /* BELOS_GMRES_POLY_SOLMGR_HPP */
|