/usr/include/trilinos/BelosDGKSOrthoManager.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | // @HEADER
// ***********************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file BelosDGKSOrthoManager.hpp
\brief Classical Gram-Schmidt (with DGKS correction) implementation of the Belos::OrthoManager class
*/
#ifndef BELOS_DGKS_ORTHOMANAGER_HPP
#define BELOS_DGKS_ORTHOMANAGER_HPP
/*! \class Belos::DGKSOrthoManager
\brief An implementation of the Belos::MatOrthoManager that performs orthogonalization
using (potentially) multiple steps of classical Gram-Schmidt.
\author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/
// #define ORTHO_DEBUG
#include "BelosConfigDefs.hpp"
#include "BelosMultiVecTraits.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMatOrthoManager.hpp"
namespace Belos {
template<class ScalarType, class MV, class OP>
class DGKSOrthoManager : public MatOrthoManager<ScalarType,MV,OP> {
private:
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef typename Teuchos::ScalarTraits<MagnitudeType> MGT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
public:
//! @name Constructor/Destructor
//@{
//! Constructor specifying re-orthogonalization tolerance.
DGKSOrthoManager( const std::string& label = "Belos",
Teuchos::RCP<const OP> Op = Teuchos::null,
const int max_blk_ortho = 2,
const MagnitudeType blk_tol = 10*MGT::squareroot( MGT::eps() ),
const MagnitudeType dep_tol = MGT::one()/MGT::squareroot( 2*MGT::one() ),
const MagnitudeType sing_tol = 10*MGT::eps() )
: MatOrthoManager<ScalarType,MV,OP>(Op),
max_blk_ortho_( max_blk_ortho ),
blk_tol_( blk_tol ),
dep_tol_( dep_tol ),
sing_tol_( sing_tol ),
label_( label )
{
std::string orthoLabel = label_ + ": Orthogonalization";
timerOrtho_ = Teuchos::TimeMonitor::getNewTimer( orthoLabel );
}
//! Destructor
~DGKSOrthoManager() {}
//@}
//! @name Accessor routines
//@{
//! Set parameter for block re-orthogonalization threshhold.
void setBlkTol( const MagnitudeType blk_tol ) { blk_tol_ = blk_tol; }
//! Set parameter for re-orthogonalization threshhold.
void setDepTol( const MagnitudeType dep_tol ) { dep_tol_ = dep_tol; }
//! Set parameter for singular block detection.
void setSingTol( const MagnitudeType sing_tol ) { sing_tol_ = sing_tol; }
//! Return parameter for block re-orthogonalization threshhold.
MagnitudeType getBlkTol() const { return blk_tol_; }
//! Return parameter for re-orthogonalization threshhold.
MagnitudeType getDepTol() const { return dep_tol_; }
//! Return parameter for singular block detection.
MagnitudeType getSingTol() const { return sing_tol_; }
//@}
//! @name Orthogonalization methods
//@{
/*! \brief Given a list of (mutually and internally) orthonormal bases \c Q, this method
* takes a multivector \c X and projects it onto the space orthogonal to the individual <tt>Q[i]</tt>,
* optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
* to the inner product innerProd().
*
* After calling this routine, \c X will be orthogonal to each of the \c <tt>Q[i]</tt>.
*
* The method uses either one or two steps of classical Gram-Schmidt. The algebraically
* equivalent projection matrix is \f$P_Q = I - Q Q^H Op\f$, if \c Op is the matrix specified for
* use in the inner product. Note, this is not an orthogonal projector.
*
@param X [in/out] The multivector to be modified.
On output, \c X will be orthogonal to <tt>Q[i]</tt> with respect to innerProd().
@param MX [in/out] The image of \c X under the operator \c Op.
If \f$ MX != 0\f$: On input, this is expected to be consistent with \c X. On output, this is updated consistent with updates to \c X.
If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.
@param C [out] The coefficients of \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer
and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of
\c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null
pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
*/
void project ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const;
/*! \brief This method calls project(X,Teuchos::null,C,Q); see documentation for that function.
*/
void project ( MV &X,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const {
project(X,Teuchos::null,C,Q);
}
/*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
*
* The method uses classical Gram-Schmidt, so that the coefficient matrix \c B is upper triangular.
*
* This routine returns an integer \c rank stating the rank of the computed basis. If \c X does not have full rank and the normalize() routine does
* not attempt to augment the subspace, then \c rank may be smaller than the number of columns in \c X. In this case, only the first \c rank columns of
* output \c X and first \c rank rows of \c B will be valid.
*
* The method attempts to find a basis with dimension the same as the number of columns in \c X. It does this by augmenting linearly dependant
* vectors in \c X with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the
* computed basis is less than the number of vectors in \c X.
*
@param X [in/out] The multivector to the modified.
On output, \c X will have some number of orthonormal columns (with respect to innerProd()).
@param MX [in/out] The image of \c X under the operator \c Op.
If \f$ MX != 0\f$: On input, this is expected to be consistent with \c X. On output, this is updated consistent with updates to \c X.
If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.
@param B [out] The coefficients of the original \c X with respect to the computed basis. The first rows in \c B
corresponding to the valid columns in \c X will be upper triangular.
@return Rank of the basis computed by this method.
*/
int normalize ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B) const;
/*! \brief This method calls normalize(X,Teuchos::null,B); see documentation for that function.
*/
int normalize ( MV &X, Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const {
return normalize(X,Teuchos::null,B);
}
/*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
*
* This routine returns an integer \c rank stating the rank of the computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$ does not
* have dimension as large as the number of columns of \c X and the orthogonalization manager doe not attempt to augment the subspace, then \c rank
* may be smaller than the number of columns of \c X. In this case, only the first \c rank columns of output \c X and first \c rank rows of \c B will
* be valid.
*
* The method attempts to find a basis with dimension the same as the number of columns in \c X. It does this by augmenting linearly dependant
* vectors with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the
* computed basis is less than the number of vectors in \c X.
*
@param X [in/out] The multivector to the modified.
On output, the relevant rows of \c X will be orthogonal to the <tt>Q[i]</tt> and will have orthonormal columns (with respect to innerProd()).
@param MX [in/out] The image of \c X under the operator \c Op.
If \f$ MX != 0\f$: On input, this is expected to be consistent with \c X. On output, this is updated consistent with updates to \c X.
If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.
@param C [out] The coefficients of the original \c X in the \c *Q[i], with respect to innerProd(). If <tt>C[i]</tt> is a non-null pointer
and \c *C[i] matches the dimensions of \c X and \c *Q[i], then the coefficients computed during the orthogonalization
routine will be stored in the matrix \c *C[i]. If <tt>C[i]</tt> is a non-null pointer whose size does not match the dimensions of
\c X and \c *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if <tt>C.size() < i<\tt> or <tt>C[i]</tt> is a null
pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
@param B [out] The coefficients of the original \c X with respect to the computed basis. The first rows in \c B
corresponding to the valid columns in \c X will be upper triangular.
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each <tt>Q[i]</tt> is assumed to have
orthonormal columns, and the <tt>Q[i]</tt> are assumed to be mutually orthogonal.
@return Rank of the basis computed by this method.
*/
int projectAndNormalize ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const;
/*! \brief This method calls projectAndNormalize(X,Teuchos::null,C,B,Q); see documentation for that function.
*/
int projectAndNormalize ( MV &X,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q ) const {
return projectAndNormalize(X,Teuchos::null,C,B,Q);
}
//@}
//! @name Error methods
//@{
/*! \brief This method computes the error in orthonormality of a multivector, measured
* as the Frobenius norm of the difference <tt>innerProd(X,Y) - I</tt>.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormError(const MV &X) const {
return orthonormError(X,Teuchos::null);
}
/*! \brief This method computes the error in orthonormality of a multivector, measured
* as the Frobenius norm of the difference <tt>innerProd(X,Y) - I</tt>.
* The method has the option of exploiting a caller-provided \c MX.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormError(const MV &X, Teuchos::RCP<const MV> MX) const;
/*! \brief This method computes the error in orthogonality of two multivectors, measured
* as the Frobenius norm of <tt>innerProd(X,Y)</tt>.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogError(const MV &X1, const MV &X2) const {
return orthogError(X1,Teuchos::null,X2);
}
/*! \brief This method computes the error in orthogonality of two multivectors, measured
* as the Frobenius norm of <tt>innerProd(X,Y)</tt>.
* The method has the option of exploiting a caller-provided \c MX.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogError(const MV &X1, Teuchos::RCP<const MV> MX1, const MV &X2) const;
//@}
//! @name Label methods
//@{
/*! \brief This method sets the label used by the timers in the orthogonalization manager.
*/
void setLabel(const std::string& label);
/*! \brief This method returns the label being used by the timers in the orthogonalization manager.
*/
const std::string& getLabel() const { return label_; }
//@}
private:
//! Parameters for re-orthogonalization.
int max_blk_ortho_;
MagnitudeType blk_tol_;
MagnitudeType dep_tol_;
MagnitudeType sing_tol_;
//! Timer and timer label.
std::string label_;
Teuchos::RCP<Teuchos::Time> timerOrtho_;
//! Routine to find an orthonormal basis for X
int findBasis(MV &X, Teuchos::RCP<MV> MX,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > C,
bool completeBasis, int howMany = -1 ) const;
//! Routine to compute the block orthogonalization
bool blkOrtho ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const;
int blkOrthoSing ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the label for this orthogonalization manager and create new timers if it's changed
template<class ScalarType, class MV, class OP>
void DGKSOrthoManager<ScalarType,MV,OP>::setLabel(const std::string& label)
{
if (label != label_) {
label_ = label;
std::string orthoLabel = label_ + ": Orthogonalization";
timerOrtho_ = Teuchos::TimeMonitor::getNewTimer(orthoLabel);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the distance from orthonormality
template<class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
DGKSOrthoManager<ScalarType,MV,OP>::orthonormError(const MV &X, Teuchos::RCP<const MV> MX) const {
const ScalarType ONE = SCT::one();
int rank = MVT::GetNumberVecs(X);
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(rank,rank);
innerProd(X,X,MX,xTx);
for (int i=0; i<rank; i++) {
xTx(i,i) -= ONE;
}
return xTx.normFrobenius();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the distance from orthogonality
template<class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
DGKSOrthoManager<ScalarType,MV,OP>::orthogError(const MV &X1, Teuchos::RCP<const MV> MX1, const MV &X2) const {
int r1 = MVT::GetNumberVecs(X1);
int r2 = MVT::GetNumberVecs(X2);
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(r2,r1);
innerProd(X2,X1,MX1,xTx);
return xTx.normFrobenius();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(X) - span(W)
template<class ScalarType, class MV, class OP>
int DGKSOrthoManager<ScalarType, MV, OP>::projectAndNormalize(
MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q ) const {
Teuchos::TimeMonitor orthotimer(*timerOrtho_);
ScalarType ONE = SCT::one();
ScalarType ZERO = SCT::zero();
int nq = Q.length();
int xc = MVT::GetNumberVecs( X );
int xr = MVT::GetVecLength( X );
int rank = xc;
/* if the user doesn't want to store the coefficienets,
* allocate some local memory for them
*/
if ( B == Teuchos::null ) {
B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xc,xc) );
}
/****** DO NO MODIFY *MX IF _hasOp == false ******/
if (this->_hasOp) {
if (MX == Teuchos::null) {
// we need to allocate space for MX
MX = MVT::Clone(X,MVT::GetNumberVecs(X));
OPT::Apply(*(this->_Op),X,*MX);
}
}
else {
// Op == I --> MX = X (ignore it if the user passed it in)
MX = Teuchos::rcp( &X, false );
}
int mxc = MVT::GetNumberVecs( *MX );
int mxr = MVT::GetVecLength( *MX );
// short-circuit
TEST_FOR_EXCEPTION( xc == 0 || xr == 0, std::invalid_argument, "Belos::DGKSOrthoManager::projectAndNormalize(): X must be non-empty" );
int numbas = 0;
for (int i=0; i<nq; i++) {
numbas += MVT::GetNumberVecs( *Q[i] );
}
// check size of B
TEST_FOR_EXCEPTION( B->numRows() != xc || B->numCols() != xc, std::invalid_argument,
"Belos::DGKSOrthoManager::projectAndNormalize(): Size of X must be consistant with size of B" );
// check size of X and MX
TEST_FOR_EXCEPTION( xc<0 || xr<0 || mxc<0 || mxr<0, std::invalid_argument,
"Belos::DGKSOrthoManager::projectAndNormalize(): MVT returned negative dimensions for X,MX" );
// check size of X w.r.t. MX
TEST_FOR_EXCEPTION( xc!=mxc || xr!=mxr, std::invalid_argument,
"Belos::DGKSOrthoManager::projectAndNormalize(): Size of X must be consistant with size of MX" );
// check feasibility
//TEST_FOR_EXCEPTION( numbas+xc > xr, std::invalid_argument,
// "Belos::DGKSOrthoManager::projectAndNormalize(): Orthogonality constraints not feasible" );
// Some flags for checking dependency returns from the internal orthogonalization methods
bool dep_flg = false;
// Make a temporary copy of X and MX, just in case a block dependency is detected.
Teuchos::RCP<MV> tmpX, tmpMX;
tmpX = MVT::CloneCopy(X);
if (this->_hasOp) {
tmpMX = MVT::CloneCopy(*MX);
}
// Use the cheaper block orthogonalization.
dep_flg = blkOrtho( X, MX, C, Q );
// If a dependency has been detected in this block, then perform
// the more expensive single-std::vector orthogonalization.
if (dep_flg) {
rank = blkOrthoSing( *tmpX, tmpMX, C, B, Q );
// Copy tmpX back into X.
MVT::MvAddMv( ONE, *tmpX, ZERO, *tmpX, X );
if (this->_hasOp) {
MVT::MvAddMv( ONE, *tmpMX, ZERO, *tmpMX, *MX );
}
}
else {
// There is no dependency, so orthonormalize new block X
rank = findBasis( X, MX, B, false );
if (rank < xc) {
// A dependency was found during orthonormalization of X,
// rerun orthogonalization using more expensive single-std::vector orthogonalization.
rank = blkOrthoSing( *tmpX, tmpMX, C, B, Q );
// Copy tmpX back into X.
MVT::MvAddMv( ONE, *tmpX, ZERO, *tmpX, X );
if (this->_hasOp) {
MVT::MvAddMv( ONE, *tmpMX, ZERO, *tmpMX, *MX );
}
}
}
// this should not raise an std::exception; but our post-conditions oblige us to check
TEST_FOR_EXCEPTION( rank > xc || rank < 0, std::logic_error,
"Belos::DGKSOrthoManager::projectAndNormalize(): Debug error in rank variable." );
// Return the rank of X.
return rank;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(X), with rank numvectors(X)
template<class ScalarType, class MV, class OP>
int DGKSOrthoManager<ScalarType, MV, OP>::normalize(
MV &X, Teuchos::RCP<MV> MX,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const {
Teuchos::TimeMonitor orthotimer(*timerOrtho_);
// call findBasis, with the instruction to try to generate a basis of rank numvecs(X)
return findBasis(X, MX, B, true);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
void DGKSOrthoManager<ScalarType, MV, OP>::project(
MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const {
// For the inner product defined by the operator Op or the identity (Op == 0)
// -> Orthogonalize X against each Q[i]
// Modify MX accordingly
//
// Note that when Op is 0, MX is not referenced
//
// Parameter variables
//
// X : Vectors to be transformed
//
// MX : Image of the block std::vector X by the mass matrix
//
// Q : Bases to orthogonalize against. These are assumed orthonormal, mutually and independently.
//
Teuchos::TimeMonitor orthotimer(*timerOrtho_);
int xc = MVT::GetNumberVecs( X );
int xr = MVT::GetVecLength( X );
int nq = Q.length();
std::vector<int> qcs(nq);
// short-circuit
if (nq == 0 || xc == 0 || xr == 0) {
return;
}
int qr = MVT::GetVecLength ( *Q[0] );
// if we don't have enough C, expand it with null references
// if we have too many, resize to throw away the latter ones
// if we have exactly as many as we have Q, this call has no effect
C.resize(nq);
/****** DO NO MODIFY *MX IF _hasOp == false ******/
if (this->_hasOp) {
if (MX == Teuchos::null) {
// we need to allocate space for MX
MX = MVT::Clone(X,MVT::GetNumberVecs(X));
OPT::Apply(*(this->_Op),X,*MX);
}
}
else {
// Op == I --> MX = X (ignore it if the user passed it in)
MX = Teuchos::rcp( &X, false );
}
int mxc = MVT::GetNumberVecs( *MX );
int mxr = MVT::GetVecLength( *MX );
// check size of X and Q w.r.t. common sense
TEST_FOR_EXCEPTION( xc<0 || xr<0 || mxc<0 || mxr<0, std::invalid_argument,
"Belos::DGKSOrthoManager::project(): MVT returned negative dimensions for X,MX" );
// check size of X w.r.t. MX and Q
TEST_FOR_EXCEPTION( xc!=mxc || xr!=mxr || xr!=qr, std::invalid_argument,
"Belos::DGKSOrthoManager::project(): Size of X not consistant with MX,Q" );
// tally up size of all Q and check/allocate C
int baslen = 0;
for (int i=0; i<nq; i++) {
TEST_FOR_EXCEPTION( MVT::GetVecLength( *Q[i] ) != qr, std::invalid_argument,
"Belos::DGKSOrthoManager::project(): Q lengths not mutually consistant" );
qcs[i] = MVT::GetNumberVecs( *Q[i] );
TEST_FOR_EXCEPTION( qr < qcs[i], std::invalid_argument,
"Belos::DGKSOrthoManager::project(): Q has less rows than columns" );
baslen += qcs[i];
// check size of C[i]
if ( C[i] == Teuchos::null ) {
C[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(qcs[i],xc) );
}
else {
TEST_FOR_EXCEPTION( C[i]->numRows() != qcs[i] || C[i]->numCols() != xc , std::invalid_argument,
"Belos::DGKSOrthoManager::project(): Size of Q not consistant with size of C" );
}
}
// Use the cheaper block orthogonalization, don't check for rank deficiency.
blkOrtho( X, MX, C, Q );
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(X), with the option of extending the subspace so that
// the rank is numvectors(X)
template<class ScalarType, class MV, class OP>
int DGKSOrthoManager<ScalarType, MV, OP>::findBasis(
MV &X, Teuchos::RCP<MV> MX,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
bool completeBasis, int howMany ) const {
// For the inner product defined by the operator Op or the identity (Op == 0)
// -> Orthonormalize X
// Modify MX accordingly
//
// Note that when Op is 0, MX is not referenced
//
// Parameter variables
//
// X : Vectors to be orthonormalized
//
// MX : Image of the multivector X under the operator Op
//
// Op : Pointer to the operator for the inner product
//
//
const ScalarType ONE = SCT::one();
const MagnitudeType ZERO = SCT::magnitude(SCT::zero());
int xc = MVT::GetNumberVecs( X );
int xr = MVT::GetVecLength( X );
if (howMany == -1) {
howMany = xc;
}
/*******************************************************
* If _hasOp == false, we will not reference MX below *
*******************************************************/
// if Op==null, MX == X (via pointer)
// Otherwise, either the user passed in MX or we will allocated and compute it
if (this->_hasOp) {
if (MX == Teuchos::null) {
// we need to allocate space for MX
MX = MVT::Clone(X,xc);
OPT::Apply(*(this->_Op),X,*MX);
}
}
/* if the user doesn't want to store the coefficienets,
* allocate some local memory for them
*/
if ( B == Teuchos::null ) {
B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xc,xc) );
}
int mxc = (this->_hasOp) ? MVT::GetNumberVecs( *MX ) : xc;
int mxr = (this->_hasOp) ? MVT::GetVecLength( *MX ) : xr;
// check size of C, B
TEST_FOR_EXCEPTION( xc == 0 || xr == 0, std::invalid_argument,
"Belos::DGKSOrthoManager::findBasis(): X must be non-empty" );
TEST_FOR_EXCEPTION( B->numRows() != xc || B->numCols() != xc, std::invalid_argument,
"Belos::DGKSOrthoManager::findBasis(): Size of X not consistant with size of B" );
TEST_FOR_EXCEPTION( xc != mxc || xr != mxr, std::invalid_argument,
"Belos::DGKSOrthoManager::findBasis(): Size of X not consistant with size of MX" );
TEST_FOR_EXCEPTION( xc > xr, std::invalid_argument,
"Belos::DGKSOrthoManager::findBasis(): Size of X not feasible for normalization" );
TEST_FOR_EXCEPTION( howMany < 0 || howMany > xc, std::invalid_argument,
"Belos::DGKSOrthoManager::findBasis(): Invalid howMany parameter" );
/* xstart is which column we are starting the process with, based on howMany
* columns before xstart are assumed to be Op-orthonormal already
*/
int xstart = xc - howMany;
for (int j = xstart; j < xc; j++) {
// numX is
// * number of currently orthonormal columns of X
// * the index of the current column of X
int numX = j;
bool addVec = false;
// Get a view of the std::vector currently being worked on.
std::vector<int> index(1);
index[0] = numX;
Teuchos::RCP<MV> Xj = MVT::CloneViewNonConst( X, index );
Teuchos::RCP<MV> MXj;
if ((this->_hasOp)) {
// MXj is a view of the current std::vector in MX
MXj = MVT::CloneViewNonConst( *MX, index );
}
else {
// MXj is a pointer to Xj, and MUST NOT be modified
MXj = Xj;
}
// Get a view of the previous vectors.
std::vector<int> prev_idx( numX );
Teuchos::RCP<const MV> prevX, prevMX;
if (numX > 0) {
for (int i=0; i<numX; i++) {
prev_idx[i] = i;
}
prevX = MVT::CloneView( X, prev_idx );
if (this->_hasOp) {
prevMX = MVT::CloneView( *MX, prev_idx );
}
}
// Make storage for these Gram-Schmidt iterations.
Teuchos::SerialDenseMatrix<int,ScalarType> product(numX, 1);
std::vector<ScalarType> oldDot( 1 ), newDot( 1 );
//
// Save old MXj std::vector and compute Op-norm
//
Teuchos::RCP<MV> oldMXj = MVT::CloneCopy( *MXj );
MVT::MvDot( *Xj, *MXj, oldDot );
// Xj^H Op Xj should be real and positive, by the hermitian positive definiteness of Op
TEST_FOR_EXCEPTION( SCT::real(oldDot[0]) < ZERO, OrthoError,
"Belos::DGKSOrthoManager::findBasis(): Negative definiteness discovered in inner product" );
if (numX > 0) {
// Apply the first step of Gram-Schmidt
// product <- prevX^T MXj
innerProd(*prevX,*Xj,MXj,product);
// Xj <- Xj - prevX prevX^T MXj
// = Xj - prevX product
MVT::MvTimesMatAddMv( -ONE, *prevX, product, ONE, *Xj );
// Update MXj
if (this->_hasOp) {
// MXj <- Op*Xj_new
// = Op*(Xj_old - prevX prevX^T MXj)
// = MXj - prevMX product
MVT::MvTimesMatAddMv( -ONE, *prevMX, product, ONE, *MXj );
}
// Compute new Op-norm
MVT::MvDot( *Xj, *MXj, newDot );
// Check if a correction is needed.
if ( SCT::magnitude(newDot[0]) < SCT::magnitude(dep_tol_*oldDot[0]) ) {
// Apply the second step of Gram-Schmidt
// This is the same as above
Teuchos::SerialDenseMatrix<int,ScalarType> P2(numX,1);
innerProd(*prevX,*Xj,MXj,P2);
product += P2;
MVT::MvTimesMatAddMv( -ONE, *prevX, P2, ONE, *Xj );
if ((this->_hasOp)) {
MVT::MvTimesMatAddMv( -ONE, *prevMX, P2, ONE, *MXj );
}
} // if (newDot[0] < dep_tol_*oldDot[0])
} // if (numX > 0)
// Compute Op-norm with old MXj
MVT::MvDot( *Xj, *oldMXj, newDot );
// Check to see if the new std::vector is dependent.
if (completeBasis) {
//
// We need a complete basis, so add random vectors if necessary
//
if ( SCT::magnitude(newDot[0]) < SCT::magnitude(sing_tol_*oldDot[0]) ) {
// Add a random std::vector and orthogonalize it against previous vectors in block.
addVec = true;
#ifdef ORTHO_DEBUG
std::cout << "Belos::DGKSOrthoManager::findBasis() --> Random for column " << numX << std::endl;
#endif
//
Teuchos::RCP<MV> tempXj = MVT::Clone( X, 1 );
Teuchos::RCP<MV> tempMXj;
MVT::MvRandom( *tempXj );
if (this->_hasOp) {
tempMXj = MVT::Clone( X, 1 );
OPT::Apply( *(this->_Op), *tempXj, *tempMXj );
}
else {
tempMXj = tempXj;
}
MVT::MvDot( *tempXj, *tempMXj, oldDot );
//
for (int num_orth=0; num_orth<max_blk_ortho_; num_orth++){
innerProd(*prevX,*tempXj,tempMXj,product);
MVT::MvTimesMatAddMv( -ONE, *prevX, product, ONE, *tempXj );
if (this->_hasOp) {
MVT::MvTimesMatAddMv( -ONE, *prevMX, product, ONE, *tempMXj );
}
}
// Compute new Op-norm
MVT::MvDot( *tempXj, *tempMXj, newDot );
//
if ( SCT::magnitude(newDot[0]) >= SCT::magnitude(oldDot[0]*sing_tol_) ) {
// Copy std::vector into current column of _basisvecs
MVT::MvAddMv( ONE, *tempXj, ZERO, *tempXj, *Xj );
if (this->_hasOp) {
MVT::MvAddMv( ONE, *tempMXj, ZERO, *tempMXj, *MXj );
}
}
else {
return numX;
}
}
}
else {
//
// We only need to detect dependencies.
//
if ( SCT::magnitude(newDot[0]) < SCT::magnitude(oldDot[0]*blk_tol_) ) {
return numX;
}
}
// If we haven't left this method yet, then we can normalize the new std::vector Xj.
// Normalize Xj.
// Xj <- Xj / std::sqrt(newDot)
ScalarType diag = SCT::squareroot(SCT::magnitude(newDot[0]));
if (SCT::magnitude(diag) > ZERO) {
MVT::MvAddMv( ONE/diag, *Xj, ZERO, *Xj, *Xj );
if (this->_hasOp) {
// Update MXj.
MVT::MvAddMv( ONE/diag, *MXj, ZERO, *MXj, *MXj );
}
}
// If we've added a random std::vector, enter a zero in the j'th diagonal element.
if (addVec) {
(*B)(j,j) = ZERO;
}
else {
(*B)(j,j) = diag;
}
// Save the coefficients, if we are working on the original std::vector and not a randomly generated one
if (!addVec) {
for (int i=0; i<numX; i++) {
(*B)(i,j) = product(i,0);
}
}
} // for (j = 0; j < xc; ++j)
return xc;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Routine to compute the block orthogonalization
template<class ScalarType, class MV, class OP>
bool
DGKSOrthoManager<ScalarType, MV, OP>::blkOrtho ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const
{
int nq = Q.length();
int xc = MVT::GetNumberVecs( X );
bool dep_flg = false;
const ScalarType ONE = SCT::one();
std::vector<int> qcs( nq );
for (int i=0; i<nq; i++) {
qcs[i] = MVT::GetNumberVecs( *Q[i] );
}
// Perform the Gram-Schmidt transformation for a block of vectors
// Compute the initial Op-norms
std::vector<ScalarType> oldDot( xc );
MVT::MvDot( X, *MX, oldDot );
Teuchos::Array<Teuchos::RCP<MV> > MQ(nq);
// Define the product Q^T * (Op*X)
for (int i=0; i<nq; i++) {
// Multiply Q' with MX
innerProd(*Q[i],X,MX,*C[i]);
// Multiply by Q and subtract the result in X
MVT::MvTimesMatAddMv( -ONE, *Q[i], *C[i], ONE, X );
// Update MX, with the least number of applications of Op as possible
if (this->_hasOp) {
if (xc <= qcs[i]) {
OPT::Apply( *(this->_Op), X, *MX);
}
else {
// this will possibly be used again below; don't delete it
MQ[i] = MVT::Clone( *Q[i], qcs[i] );
OPT::Apply( *(this->_Op), *Q[i], *MQ[i] );
MVT::MvTimesMatAddMv( -ONE, *MQ[i], *C[i], ONE, *MX );
}
}
}
// Do as many steps of classical Gram-Schmidt as required by max_blk_ortho_
for (int j = 1; j < max_blk_ortho_; ++j) {
for (int i=0; i<nq; i++) {
Teuchos::SerialDenseMatrix<int,ScalarType> C2(*C[i]);
// Apply another step of classical Gram-Schmidt
innerProd(*Q[i],X,MX,C2);
*C[i] += C2;
MVT::MvTimesMatAddMv( -ONE, *Q[i], C2, ONE, X );
// Update MX, with the least number of applications of Op as possible
if (this->_hasOp) {
if (MQ[i].get()) {
// MQ was allocated and computed above; use it
MVT::MvTimesMatAddMv( -ONE, *MQ[i], C2, ONE, *MX );
}
else if (xc <= qcs[i]) {
// MQ was not allocated and computed above; it was cheaper to use X before and it still is
OPT::Apply( *(this->_Op), X, *MX);
}
}
} // for (int i=0; i<nq; i++)
} // for (int j = 0; j < max_blk_ortho; ++j)
// Compute new Op-norms
std::vector<ScalarType> newDot(xc);
MVT::MvDot( X, *MX, newDot );
// Check to make sure the new block of vectors are not dependent on previous vectors
for (int i=0; i<xc; i++){
if (SCT::magnitude(newDot[i]) < SCT::magnitude(oldDot[i] * blk_tol_)) {
dep_flg = true;
break;
}
} // end for (i=0;...)
return dep_flg;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Routine to compute the block orthogonalization using single-std::vector orthogonalization
template<class ScalarType, class MV, class OP>
int
DGKSOrthoManager<ScalarType, MV, OP>::blkOrthoSing ( MV &X, Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::Array<Teuchos::RCP<const MV> > Q) const
{
const ScalarType ONE = SCT::one();
const ScalarType ZERO = SCT::zero();
int nq = Q.length();
int xc = MVT::GetNumberVecs( X );
std::vector<int> indX( 1 );
std::vector<ScalarType> oldDot( 1 ), newDot( 1 );
std::vector<int> qcs( nq );
for (int i=0; i<nq; i++) {
qcs[i] = MVT::GetNumberVecs( *Q[i] );
}
// Create pointers for the previous vectors of X that have already been orthonormalized.
Teuchos::RCP<const MV> lastQ;
Teuchos::RCP<MV> Xj, MXj;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lastC;
// Perform the Gram-Schmidt transformation for each std::vector in the block of vectors.
for (int j=0; j<xc; j++) {
bool dep_flg = false;
// Get a view of the previously orthogonalized vectors and B, add it to the arrays.
if (j > 0) {
std::vector<int> index( j );
for (int ind=0; ind<j; ind++) {
index[ind] = ind;
}
lastQ = MVT::CloneView( X, index );
// Add these views to the Q and C arrays.
Q.push_back( lastQ );
C.push_back( B );
qcs.push_back( MVT::GetNumberVecs( *lastQ ) );
}
// Get a view of the current std::vector in X to orthogonalize.
indX[0] = j;
Xj = MVT::CloneViewNonConst( X, indX );
if (this->_hasOp) {
MXj = MVT::CloneViewNonConst( *MX, indX );
}
else {
MXj = Xj;
}
// Compute the initial Op-norms
MVT::MvDot( *Xj, *MXj, oldDot );
Teuchos::Array<Teuchos::RCP<MV> > MQ(Q.length());
// Define the product Q^T * (Op*X)
for (int i=0; i<Q.length(); i++) {
// Get a view of the current serial dense matrix
Teuchos::SerialDenseMatrix<int,ScalarType> tempC( Teuchos::View, *C[i], qcs[i], 1, 0, j );
// Multiply Q' with MX
innerProd(*Q[i],*Xj,MXj,tempC);
// Multiply by Q and subtract the result in Xj
MVT::MvTimesMatAddMv( -ONE, *Q[i], tempC, ONE, *Xj );
// Update MXj, with the least number of applications of Op as possible
if (this->_hasOp) {
if (xc <= qcs[i]) {
OPT::Apply( *(this->_Op), *Xj, *MXj);
}
else {
// this will possibly be used again below; don't delete it
MQ[i] = MVT::Clone( *Q[i], qcs[i] );
OPT::Apply( *(this->_Op), *Q[i], *MQ[i] );
MVT::MvTimesMatAddMv( -ONE, *MQ[i], tempC, ONE, *MXj );
}
}
}
// Compute the Op-norms
MVT::MvDot( *Xj, *MXj, newDot );
// Do one step of classical Gram-Schmidt orthogonalization
// with a second correction step if needed.
if ( SCT::magnitude(newDot[0]) < SCT::magnitude(oldDot[0]*dep_tol_) ) {
for (int i=0; i<Q.length(); i++) {
Teuchos::SerialDenseMatrix<int,ScalarType> tempC( Teuchos::View, *C[i], qcs[i], 1, 0, j );
Teuchos::SerialDenseMatrix<int,ScalarType> C2( qcs[i], 1 );
// Apply another step of classical Gram-Schmidt
innerProd(*Q[i],*Xj,MXj,C2);
tempC += C2;
MVT::MvTimesMatAddMv( -ONE, *Q[i], C2, ONE, *Xj );
// Update MXj, with the least number of applications of Op as possible
if (this->_hasOp) {
if (MQ[i].get()) {
// MQ was allocated and computed above; use it
MVT::MvTimesMatAddMv( -ONE, *MQ[i], C2, ONE, *MXj );
}
else if (xc <= qcs[i]) {
// MQ was not allocated and computed above; it was cheaper to use X before and it still is
OPT::Apply( *(this->_Op), *Xj, *MXj);
}
}
} // for (int i=0; i<Q.length(); i++)
// Compute the Op-norms after the correction step.
MVT::MvDot( *Xj, *MXj, newDot );
} // if ()
// Check for linear dependence.
if (SCT::magnitude(newDot[0]) < SCT::magnitude(oldDot[0]*sing_tol_)) {
dep_flg = true;
}
// Normalize the new std::vector if it's not dependent
if (!dep_flg) {
ScalarType diag = SCT::squareroot(SCT::magnitude(newDot[0]));
MVT::MvAddMv( ONE/diag, *Xj, ZERO, *Xj, *Xj );
if (this->_hasOp) {
// Update MXj.
MVT::MvAddMv( ONE/diag, *MXj, ZERO, *MXj, *MXj );
}
// Enter value on diagonal of B.
(*B)(j,j) = diag;
}
else {
// Create a random std::vector and orthogonalize it against all previous columns of Q.
Teuchos::RCP<MV> tempXj = MVT::Clone( X, 1 );
Teuchos::RCP<MV> tempMXj;
MVT::MvRandom( *tempXj );
if (this->_hasOp) {
tempMXj = MVT::Clone( X, 1 );
OPT::Apply( *(this->_Op), *tempXj, *tempMXj );
}
else {
tempMXj = tempXj;
}
MVT::MvDot( *tempXj, *tempMXj, oldDot );
//
for (int num_orth=0; num_orth<max_blk_ortho_; num_orth++) {
for (int i=0; i<Q.length(); i++) {
Teuchos::SerialDenseMatrix<int,ScalarType> product( qcs[i], 1 );
// Apply another step of classical Gram-Schmidt
innerProd(*Q[i],*tempXj,tempMXj,product);
MVT::MvTimesMatAddMv( -ONE, *Q[i], product, ONE, *tempXj );
// Update MXj, with the least number of applications of Op as possible
if (this->_hasOp) {
if (MQ[i].get()) {
// MQ was allocated and computed above; use it
MVT::MvTimesMatAddMv( -ONE, *MQ[i], product, ONE, *tempMXj );
}
else if (xc <= qcs[i]) {
// MQ was not allocated and computed above; it was cheaper to use X before and it still is
OPT::Apply( *(this->_Op), *tempXj, *tempMXj);
}
}
} // for (int i=0; i<nq; i++)
}
// Compute the Op-norms after the correction step.
MVT::MvDot( *tempXj, *tempMXj, newDot );
// Copy std::vector into current column of Xj
if ( SCT::magnitude(newDot[0]) >= SCT::magnitude(oldDot[0]*sing_tol_) ) {
ScalarType diag = SCT::squareroot(SCT::magnitude(newDot[0]));
// Enter value on diagonal of B.
(*B)(j,j) = ZERO;
// Copy std::vector into current column of _basisvecs
MVT::MvAddMv( ONE/diag, *tempXj, ZERO, *tempXj, *Xj );
if (this->_hasOp) {
MVT::MvAddMv( ONE/diag, *tempMXj, ZERO, *tempMXj, *MXj );
}
}
else {
return j;
}
} // if (!dep_flg)
// Remove the vectors from array
if (j > 0) {
Q.resize( nq );
C.resize( nq );
qcs.resize( nq );
}
} // for (int j=0; j<xc; j++)
return xc;
}
} // namespace Belos
#endif // BELOS_DGKS_ORTHOMANAGER_HPP
|