This file is indexed.

/usr/include/trilinos/BelosBlockCGIter.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// @HEADER
// ***********************************************************************
//
//                 Belos: Block Linear Solvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef BELOS_BLOCK_CG_ITER_HPP
#define BELOS_BLOCK_CG_ITER_HPP

/*! \file BelosBlockCGIter.hpp
    \brief Belos concrete class for performing the block conjugate-gradient (CG) iteration.
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosCGIteration.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"

#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!	
  \class Belos::BlockCGIter
  
  \brief This class implements the block, preconditioned Conjugate Gradient (CG) iteration.

  \ingroup belos_solver_framework
 
  \author Teri Barth and Heidi Thornquist
*/

namespace Belos {
  
template<class ScalarType, class MV, class OP>
class BlockCGIter : virtual public CGIteration<ScalarType,MV,OP> {

  public:
    
  //
  // Convenience typedefs
  //
  typedef MultiVecTraits<ScalarType,MV> MVT;
  typedef OperatorTraits<ScalarType,MV,OP> OPT;
  typedef Teuchos::ScalarTraits<ScalarType> SCT;
  typedef typename SCT::magnitudeType MagnitudeType;

  //! @name Constructors/Destructor
  //@{ 

  /*! \brief %BlockCGIter constructor with linear problem, solver utilities, and parameter list of solver options.
   *
   * This constructor takes pointers required by the linear solver iteration, in addition
   * to a parameter list of options for the linear solver.
   */
  BlockCGIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
	       const Teuchos::RCP<OutputManager<ScalarType> > &printer,
	       const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
	       const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
	       Teuchos::ParameterList &params );

  //! Destructor.
  virtual ~BlockCGIter() {};
  //@}


  //! @name Solver methods
  //@{ 
  
  /*! \brief This method performs BlockCG iterations until the status
   * test indicates the need to stop or an error occurs (in which case, an
   * std::exception is thrown).
   *
   * iterate() will first determine whether the solver is initialized; if
   * not, it will call initialize() using default arguments. After
   * initialization, the solver performs BlockCG iterations until the
   * status test evaluates as ::Passed, at which point the method returns to
   * the caller. 
   *
   * The status test is queried at the beginning of the iteration.
   */
  void iterate();

  /*! \brief Initialize the solver to an iterate, providing a complete state.
   *
   * The %BlockCGIter contains a certain amount of state, consisting of the current 
   * residual, preconditioned residual, and decent direction.
   *
   * initialize() gives the user the opportunity to manually set these,
   * although only the current unpreconditioned residual is required.
   *
   * \post 
   * <li>isInitialized() == \c true (see post-conditions of isInitialize())
   *
   * \note For any pointer in \c newstate which directly points to the multivectors in 
   * the solver, the data is not copied.
   */
  void initializeCG(CGIterationState<ScalarType,MV> newstate);

  /*! \brief Initialize the solver with the initial vectors from the linear problem
   *  or random data.
   */
  void initialize()
  {
    CGIterationState<ScalarType,MV> empty;
    initializeCG(empty);
  }
  
  /*! \brief Get the current state of the linear solver.
   *
   * The data is only valid if isInitialized() == \c true.
   *
   * \returns A CGIterationState object containing const pointers to the current solver state.
   */
  CGIterationState<ScalarType,MV> getState() const {
    CGIterationState<ScalarType,MV> state;
    state.R = R_;
    state.P = P_;
    state.AP = AP_;
    state.Z = Z_;
    return state;
  }

  //@}

  
  //! @name Status methods
  //@{ 

  //! \brief Get the current iteration count.
  int getNumIters() const { return iter_; }
  
  //! \brief Reset the iteration count.
  void resetNumIters( int iter=0 ) { iter_ = iter; }

  //! Get the norms of the residuals native to the solver.
  //! \return A std::vector of length blockSize containing the native residuals.
  Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const { return R_; }

  //! Get the current update to the linear system.
  /*! \note This method returns a null pointer because the linear problem is current.
  */
  Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }

  //@}
  
  //! @name Accessor methods
  //@{ 

  //! Get a constant reference to the linear problem.
  const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }

  //! Get the blocksize to be used by the iterative solver in solving this linear problem.
  int getBlockSize() const { return blockSize_; }

  //! \brief Set the blocksize to be used by the iterative solver in solving this linear problem.
  void setBlockSize(int blockSize);

  //! States whether the solver has been initialized or not.
  bool isInitialized() { return initialized_; }

  //@}

  private:

  //
  // Internal methods
  //
  //! Method for initalizing the state storage needed by block CG.
  void setStateSize();
  
  //
  // Classes inputed through constructor that define the linear problem to be solved.
  //
  const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >    lp_;
  const Teuchos::RCP<OutputManager<ScalarType> >          om_;
  const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >       stest_;
  const Teuchos::RCP<OrthoManager<ScalarType,MV> >        ortho_;

  //
  // Algorithmic parameters
  //
  // blockSize_ is the solver block size.
  int blockSize_;

  //  
  // Current solver state
  //
  // initialized_ specifies that the basis vectors have been initialized and the iterate() routine
  // is capable of running; _initialize is controlled  by the initialize() member method
  // For the implications of the state of initialized_, please see documentation for initialize()
  bool initialized_;

  // stateStorageInitialized_ specified that the state storage has be initialized.
  // This initialization may be postponed if the linear problem was generated without 
  // the right-hand side or solution vectors.
  bool stateStorageInitialized_;

  // Current subspace dimension, and number of iterations performed.
  int iter_;
  
  // 
  // State Storage
  // 
  // Residual
  Teuchos::RCP<MV> R_;
  //
  // Preconditioned residual
  Teuchos::RCP<MV> Z_;
  //
  // Direction std::vector
  Teuchos::RCP<MV> P_;
  //
  // Operator applied to direction std::vector
  Teuchos::RCP<MV> AP_;

};

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor.
  template<class ScalarType, class MV, class OP>
  BlockCGIter<ScalarType,MV,OP>::BlockCGIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
					     const Teuchos::RCP<OutputManager<ScalarType> > &printer,
					     const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
					     const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
					     Teuchos::ParameterList &params ):
    lp_(problem),
    om_(printer),
    stest_(tester),
    ortho_(ortho),
    blockSize_(0),
    initialized_(false),
    stateStorageInitialized_(false),
    iter_(0)
  {
    // Set the block size and allocate data
    int bs = params.get("Block Size", 1);
    setBlockSize( bs );
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Setup the state storage.
  template <class ScalarType, class MV, class OP>
  void BlockCGIter<ScalarType,MV,OP>::setStateSize ()
  {
    if (!stateStorageInitialized_) {

      // Check if there is any multivector to clone from.
      Teuchos::RCP<const MV> lhsMV = lp_->getLHS();
      Teuchos::RCP<const MV> rhsMV = lp_->getRHS();
      if (lhsMV == Teuchos::null && rhsMV == Teuchos::null) {
	stateStorageInitialized_ = false;
	return;
      }
      else {
	
	// Initialize the state storage
	// If the subspace has not be initialized before, generate it using the LHS or RHS from lp_.
	if (R_ == Teuchos::null || MVT::GetNumberVecs(*R_)!=blockSize_) {
	  // Get the multivector that is not null.
	  Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
	  TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::invalid_argument,
			     "Belos::BlockCGIter::setStateSize(): linear problem does not specify multivectors to clone from.");
	  R_ = MVT::Clone( *tmp, blockSize_ );
	  Z_ = MVT::Clone( *tmp, blockSize_ );
	  P_ = MVT::Clone( *tmp, blockSize_ );
	  AP_ = MVT::Clone( *tmp, blockSize_ );
	}
	
	// State storage has now been initialized.
	stateStorageInitialized_ = true;
      }
    }
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Set the block size and make necessary adjustments.
  template <class ScalarType, class MV, class OP>
  void BlockCGIter<ScalarType,MV,OP>::setBlockSize (int blockSize)
  {
    // This routine only allocates space; it doesn't not perform any computation
    // any change in size will invalidate the state of the solver.

    TEST_FOR_EXCEPTION(blockSize <= 0, std::invalid_argument, "Belos::BlockGmresIter::setBlockSize was passed a non-positive argument.");
    if (blockSize == blockSize_) {
      // do nothing
      return;
    }

    if (blockSize!=blockSize_)
      stateStorageInitialized_ = false;

    blockSize_ = blockSize;

    initialized_ = false;

    // Use the current blockSize_ to initialize the state storage.
    setStateSize();

  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Initialize this iteration object
  template <class ScalarType, class MV, class OP>
  void BlockCGIter<ScalarType,MV,OP>::initializeCG(CGIterationState<ScalarType,MV> newstate)
  {
    // Initialize the state storage if it isn't already.
    if (!stateStorageInitialized_) 
      setStateSize();

    TEST_FOR_EXCEPTION(!stateStorageInitialized_,std::invalid_argument,
		       "Belos::BlockCGIter::initialize(): Cannot initialize state storage!");
    
    // NOTE:  In BlockCGIter R_, the initial residual, is required!!!  
    //
    std::string errstr("Belos::BlockCGIter::initialize(): Specified multivectors must have a consistent length and width.");

    // Create convenience variables for zero and one.
    const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
    const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();

    if (newstate.R != Teuchos::null) {

      TEST_FOR_EXCEPTION( MVT::GetVecLength(*newstate.R) != MVT::GetVecLength(*R_),
                          std::invalid_argument, errstr );
      TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.R) != blockSize_,
                          std::invalid_argument, errstr );

      // Copy basis vectors from newstate into V
      if (newstate.R != R_) {
        // copy over the initial residual (unpreconditioned).
	MVT::MvAddMv( one, *newstate.R, zero, *newstate.R, *R_ );
      }
      // Compute initial direction vectors
      // Initially, they are set to the preconditioned residuals
      //
      if ( lp_->getLeftPrec() != Teuchos::null ) {
	lp_->applyLeftPrec( *R_, *Z_ ); 
	MVT::MvAddMv( one, *Z_, zero, *Z_, *P_ );
      } else {
	Z_ = R_;
	MVT::MvAddMv( one, *R_, zero, *R_, *P_ );
      }
    }
    else {

      TEST_FOR_EXCEPTION(newstate.R == Teuchos::null,std::invalid_argument,
                         "Belos::BlockCGIter::initialize(): BlockCGStateIterState does not have initial residual.");
    }

    // The solver is initialized
    initialized_ = true;
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Iterate until the status test informs us we should stop.
  template <class ScalarType, class MV, class OP>
  void BlockCGIter<ScalarType,MV,OP>::iterate()
  {
    //
    // Allocate/initialize data structures
    //
    if (initialized_ == false) {
      initialize();
    }
    // Allocate data needed for LAPACK work.
    int info = 0;
    char UPLO = 'U';
    Teuchos::LAPACK<int,ScalarType> lapack;

    // Allocate memory for scalars.
    Teuchos::SerialDenseMatrix<int,ScalarType> alpha( blockSize_, blockSize_ );
    Teuchos::SerialDenseMatrix<int,ScalarType> beta( blockSize_, blockSize_ );
    Teuchos::SerialDenseMatrix<int,ScalarType> rHz( blockSize_, blockSize_ ), 
      rHz_old( blockSize_, blockSize_ ), pAp( blockSize_, blockSize_ );

    // Create convenience variables for zero and one.
    const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
    
    // Get the current solution std::vector.
    Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();

    // Check that the current solution std::vector has blockSize_ columns. 
    TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*cur_soln_vec) != blockSize_, CGIterateFailure,
                        "Belos::BlockCGIter::iterate(): current linear system does not have the right number of vectors!" );
    int rank = ortho_->normalize( *P_, Teuchos::null );
    TEST_FOR_EXCEPTION(rank != blockSize_,CGIterationOrthoFailure,
                         "Belos::BlockCGIter::iterate(): Failed to compute initial block of orthonormal direction vectors.");


    ////////////////////////////////////////////////////////////////
    // Iterate until the status test tells us to stop.
    //
    while (stest_->checkStatus(this) != Passed) {
        
      // Increment the iteration
      iter_++;
    
      // Multiply the current direction std::vector by A and store in Ap_
      lp_->applyOp( *P_, *AP_ );
      
      // Compute alpha := <P_,R_> / <P_,AP_>
      // 1) Compute P^T * A * P = pAp and P^T * R 
      // 2) Compute the Cholesky Factorization of pAp
      // 3) Back and forward solves to compute alpha
      //
      MVT::MvTransMv( one, *P_, *R_, alpha );
      MVT::MvTransMv( one, *P_, *AP_, pAp );      
     
      // Compute Cholesky factorization of pAp
      lapack.POTRF(UPLO, blockSize_, pAp.values(), blockSize_, &info);
      TEST_FOR_EXCEPTION(info != 0,CGIterationLAPACKFailure,
                         "Belos::BlockCGIter::iterate(): Failed to compute Cholesky factorization using LAPACK routine POTRF.");

      // Compute alpha by performing a back and forward solve with the Cholesky factorization in pAp.
      lapack.POTRS(UPLO, blockSize_, blockSize_, pAp.values(), blockSize_, 
		   alpha.values(), blockSize_, &info);
      TEST_FOR_EXCEPTION(info != 0,CGIterationLAPACKFailure,
                         "Belos::BlockCGIter::iterate(): Failed to compute alpha using Cholesky factorization (POTRS).");
      
      //
      // Update the solution std::vector X := X + alpha * P_
      //
      MVT::MvTimesMatAddMv( one, *P_, alpha, one, *cur_soln_vec );
      lp_->updateSolution();
      //
      // Compute the new residual R_ := R_ - alpha * AP_
      //
      MVT::MvTimesMatAddMv( -one, *AP_, alpha, one, *R_ );
      //
      // Compute the new preconditioned residual, Z_.
      if ( lp_->getLeftPrec() != Teuchos::null ) {
	lp_->applyLeftPrec( *R_, *Z_ );
      } else {
	Z_ = R_;
      }
      //
      // Compute beta := <AP_,Z_> / <P_,AP_> 
      // 1) Compute AP_^T * Z_ 
      // 2) Compute the Cholesky Factorization of pAp (already have)
      // 3) Back and forward solves to compute beta

      // Compute <AP_,Z>
      MVT::MvTransMv( -one, *AP_, *Z_, beta );
      //
      lapack.POTRS(UPLO, blockSize_, blockSize_, pAp.values(), blockSize_, 
		   beta.values(), blockSize_, &info);
      TEST_FOR_EXCEPTION(info != 0,CGIterationLAPACKFailure,
                         "Belos::BlockCGIter::iterate(): Failed to compute beta using Cholesky factorization (POTRS).");
      //
      // Compute the new direction vectors P_ = Z_ + P_ * beta 
      //
      Teuchos::RCP<MV> Pnew = MVT::CloneCopy( *Z_ );
      MVT::MvTimesMatAddMv(one, *P_, beta, one, *Pnew);
      P_ = Pnew;

      // Compute orthonormal block of new direction vectors.
      rank = ortho_->normalize( *P_, Teuchos::null );
      TEST_FOR_EXCEPTION(rank != blockSize_,CGIterationOrthoFailure,
                         "Belos::BlockCGIter::iterate(): Failed to compute block of orthonormal direction vectors.");
      
    } // end while (sTest_->checkStatus(this) != Passed)
  }

} // end Belos namespace

#endif /* BELOS_BLOCK_CG_ITER_HPP */