/usr/include/trilinos/AnasaziEpetraAdapter.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziEpetraAdapter.hpp
\brief Declarations of Anasazi multi-vector and operator classes using Epetra_MultiVector and Epetra_Operator classes
*/
#ifndef ANASAZI_EPETRA_ADAPTER_HPP
#define ANASAZI_EPETRA_ADAPTER_HPP
#include "AnasaziConfigDefs.hpp"
#include "Anasaziepetra_DLLExportMacro.h"
#include "AnasaziTypes.hpp"
#include "AnasaziMultiVec.hpp"
#include "AnasaziOperator.hpp"
#include "Teuchos_TestForException.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Epetra_MultiVector.h"
#include "Epetra_Vector.h"
#include "Epetra_Operator.h"
#include "Epetra_Map.h"
#include "Epetra_LocalMap.h"
namespace Anasazi {
//! @name Epetra Adapter Exceptions
//@{
/** \brief EpetraMultiVecFailure is thrown when a return value from an Epetra
* call on an Epetra_MultiVector is non-zero.
*/
class EpetraMultiVecFailure : public AnasaziError {public:
EpetraMultiVecFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
/** \brief EpetraOpFailure is thrown when a return value from an Epetra
* call on an Epetra_Operator is non-zero.
*/
class EpetraOpFailure : public AnasaziError {public:
EpetraOpFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
//@}
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraMultiVec-----------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Basic adapter class for Anasazi::MultiVec that uses Epetra_MultiVector.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraMultiVec : public MultiVec<double>, public Epetra_MultiVector {
public:
//! @name Constructors/Destructors
//@{
//! Basic EpetraMultiVec constructor.
/*! @param Map [in] An Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.
@param numvecs [in] Number of vectors in multi-vector.
\returns Pointer to an EpetraMultiVec
*/
EpetraMultiVec(const Epetra_BlockMap& Map_in, const int numvecs);
//! Copy constructor.
EpetraMultiVec(const Epetra_MultiVector & P_vec);
//! Create multi-vector with values from two dimensional array.
/*! @param Map [in] An Epetra_LocalMap, Epetra_Map or Epetra_BlockMap
@param array [in] Pointer to an array of double precision numbers. The first vector starts at \c array, the
second at \c array+stride, and so on. This array is copied.
@param numvecs [in] Number of vectors in the multi-vector.
@param stride [in] The stride between vectors in memory of \c array.
\returns Pointer to an EpetraMultiVec
*/
EpetraMultiVec(const Epetra_BlockMap& Map_in, double * array, const int numvecs, const int stride=0);
//! Create multi-vector from list of vectors in an existing EpetraMultiVec.
/*! @param CV [in] Enumerated type set to Copy or View.
@param P_vec [in] An existing fully constructed Epetra_MultiVector.
@param index [in] A integer vector containing the indices of the vectors to copy out of \c P_vec.
\returns Pointer to an EpetraMultiVec
*/
EpetraMultiVec(Epetra_DataAccess CV, const Epetra_MultiVector& P_vec, const std::vector<int>& index);
//! Destructor
virtual ~EpetraMultiVec() {};
//@}
//! @name Creation methods
//@{
/*! \brief Creates a new empty EpetraMultiVec containing \c numvecs columns.
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * Clone ( const int numvecs ) const;
/*! \brief Creates a new EpetraMultiVec and copies contents of \c *this into
the new vector (deep copy).
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * CloneCopy () const;
/*! \brief Creates a new EpetraMultiVec and copies the selected contents of \c *this
into the new vector (deep copy).
The copied vectors from \c *this are indicated by the \c index.size() indices in \c index.
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * CloneCopy ( const std::vector<int>& index ) const;
/*! \brief Creates a new EpetraMultiVec that shares the selected contents of \c *this.
The index of the \c numvecs vectors shallow copied from \c *this are indicated by the
indices given in \c index.
\returns Pointer to an EpetraMultiVec
*/
MultiVec<double> * CloneViewNonConst ( const std::vector<int>& index );
/*! \brief Creates a new EpetraMultiVec that shares the selected contents of \c *this.
The index of the \c numvecs vectors shallow copied from \c *this are indicated by the
indices given in \c index.
\returns Pointer to an EpetraMultiVec
*/
const MultiVec<double> * CloneView ( const std::vector<int>& index ) const;
//@}
//! @name Attribute methods
//@{
//! Obtain the vector length of *this.
int GetNumberVecs () const { return NumVectors(); }
//! Obtain the number of vectors in *this.
int GetVecLength () const { return GlobalLength(); }
//@}
//! @name Update methods
//@{
/*! \brief Update \c *this with \f$\alpha AB + \beta (*this)\f$.
*/
void MvTimesMatAddMv ( double alpha, const MultiVec<double>& A,
const Teuchos::SerialDenseMatrix<int,double>& B,
double beta );
/*! \brief Replace \c *this with \f$\alpha A + \beta B\f$.
*/
void MvAddMv ( double alpha, const MultiVec<double>& A,
double beta, const MultiVec<double>& B);
/*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$\alpha A^T(*this)\f$.
*/
void MvTransMv ( double alpha, const MultiVec<double>& A, Teuchos::SerialDenseMatrix<int,double>& B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
) const;
/*! \brief Compute a vector \c b where the components are the individual dot-products, i.e. \f$ b[i] = A[i]^H(this[i])\f$ where \c A[i] is the i-th column of \c A.
*/
void MvDot ( const MultiVec<double>& A, std::vector<double> &b
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
) const;
/*! \brief Scale each element of the vectors in \c *this with \c alpha.
*/
void MvScale ( double alpha ) {
TEST_FOR_EXCEPTION( this->Scale( alpha )!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvScale call to Epetra_MultiVector::Scale() returned a nonzero value.");
}
/*! \brief Scale each element of the \c i-th vector in \c *this with \c alpha[i].
*/
void MvScale ( const std::vector<double>& alpha );
//@}
//! @name Norm method
//@{
/*! \brief Compute the 2-norm of each individual vector of \c *this.
Upon return, \c normvec[i] holds the 2-norm of the \c i-th vector of \c *this
*/
void MvNorm ( std::vector<double> & normvec ) const {
if (((int)normvec.size() >= GetNumberVecs()) ) {
TEST_FOR_EXCEPTION( this->Norm2(&normvec[0])!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvNorm call to Epetra_MultiVector::Norm2() returned a nonzero value.");
}
};
//@}
//! @name Initialization methods
//@{
/*! \brief Copy the vectors in \c A to a set of vectors in \c *this.
The \c numvecs vectors in \c A are copied to a subset of vectors in \c *this
indicated by the indices given in \c index.
*/
void SetBlock ( const MultiVec<double>& A, const std::vector<int>& index );
/*! \brief Fill the vectors in \c *this with random numbers.
*/
void MvRandom() {
TEST_FOR_EXCEPTION( this->Random()!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvRandom call to Epetra_MultiVector::Random() returned a nonzero value.");
};
/*! \brief Replace each element of the vectors in \c *this with \c alpha.
*/
void MvInit ( double alpha ) {
TEST_FOR_EXCEPTION( this->PutScalar( alpha )!=0, EpetraMultiVecFailure,
"Anasazi::EpetraMultiVec::MvInit call to Epetra_MultiVector::PutScalar() returned a nonzero value.");
};
//@}
//! @name Print method
//@{
/*! \brief Print \c *this EpetraMultiVec.
*/
void MvPrint( std::ostream& os ) const { os << *this << std::endl; };
//@}
private:
};
//-------------------------------------------------------------
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraOp---------------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Basic adapter class for Anasazi::Operator that uses Epetra_Operator.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraOp : public virtual Operator<double> {
public:
//! @name Constructor/Destructor
//@{
//! Basic constructor. Accepts reference-counted pointer to an Epetra_Operator.
EpetraOp(const Teuchos::RCP<Epetra_Operator> &Op );
//! Destructor
~EpetraOp();
//@}
//! @name Operator application method
//@{
/*! \brief This method takes the Anasazi::MultiVec \c X and
applies the operator to it resulting in the Anasazi::MultiVec \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
//@}
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<Epetra_Operator> Epetra_Op;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
//-------------------------------------------------------------
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraGenOp--------------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating an operators often used in solving generalized eigenproblems.
This class will apply the operation \f$A^{-1}M\f$ [default] or \f$AM\f$, for the \c Apply method of the
Epetra_Operator / Anasazi::Operator. The Anasazi::EpetraGenOp operator is useful when spectral
transformations are used within eigensolvers. For instance, \f$A^{-1}M\f$ is a shift and invert
spectral transformation commonly used with Anasazi::BlockKrylovSchur to compute the smallest-magnitude
eigenvalues for the eigenproblem \f$Ax = \lambda Mx\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraGenOp : public virtual Operator<double>, public virtual Epetra_Operator {
public:
//! Basic constructor for applying operator \f$A^{-1}M\f$ [default] or \f$AM\f$.
/*! If \c isAInverse is true this operator will apply \f$A^{-1}M\f$, else
it will apply \f$AM\f$.
*/
EpetraGenOp(const Teuchos::RCP<Epetra_Operator> &AOp,
const Teuchos::RCP<Epetra_Operator> &MOp,
bool isAInverse = true );
//! Destructor
~EpetraGenOp();
//! Apply method [inherited from Anasazi::Operator class]
/*! This method will apply \f$A^{-1}M\f$ or \f$AM\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
//! Apply method [inherited from Epetra_Operator class]
/*! This method will apply \f$A^{-1}M\f$ or \f$AM\f$ to \c X, returning \c Y.
*/
int Apply(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Apply inverse method [inherited from Epetra_Operator class]
/*! This method will apply \f$(A^{-1}M)^{-1}\f$ or \f$(AM)^{-1}\f$ to \c X, returning \c Y.
*/
int ApplyInverse(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Returns a character string describing the operator.
const char* Label() const { return "Epetra_Operator applying A^{-1}M"; };
//! Returns the current UseTranspose setting [always false for this operator].
bool UseTranspose() const { return (false); };
//! If set true, the transpose of this operator will be applied [not functional for this operator].
int SetUseTranspose(bool /*UseTranspose_in*/) { return 0; };
//! Returns true if this object can provide an approximate inf-norm [always false for this operator].
bool HasNormInf() const { return (false); };
//! Returns the infinity norm of the global matrix [not functional for this operator].
double NormInf() const { return (-1.0); };
//! Returns the Epetra_Comm communicator associated with this operator.
const Epetra_Comm& Comm() const { return Epetra_AOp->Comm(); };
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map& OperatorDomainMap() const { return Epetra_AOp->OperatorDomainMap(); };
//! Returns the Epetra_Map object associated with the range of this operator.
const Epetra_Map& OperatorRangeMap() const { return Epetra_AOp->OperatorRangeMap(); };
private:
bool isAInverse;
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<Epetra_Operator> Epetra_AOp;
Teuchos::RCP<Epetra_Operator> Epetra_MOp;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
///////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraSymOp--------------------
//
///////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a symmetric operator from an Epetra_Operator.
This class will apply the operation \f$A^TA\f$ [default] or \f$AA^T\f$, for the \c Apply method of the
Epetra_Operator / Anasazi::Operator. The Anasazi::EpetraSymOp operator is useful when trying to compute
a few singular values of the operator \f$A\f$. The singular values are the square-root of the eigenvalues
of \f$A^TA\f$ and \f$AA^T\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraSymOp : public virtual Operator<double>, public virtual Epetra_Operator {
public:
//! Basic constructor for applying operator \f$A^TA\f$ [default] or \f$AA^T\f$.
/*! If \c isTrans is false this operator will apply \f$A^TA\f$, else it will apply \f$AA^T\f$.
*/
EpetraSymOp(const Teuchos::RCP<Epetra_Operator> &Op, bool isTrans = false );
//! Destructor
~EpetraSymOp();
//! Apply method [inherited from Anasazi::Operator class]
/*! This method will apply \f$A^TA\f$ or \f$AA^T\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
//! Apply method [inherited from Epetra_Operator class]
/*! This method will apply \f$A^TA\f$ or \f$AA^T\f$ to \c X, returning \c Y.
*/
int Apply(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Apply inverse method [inherited from Epetra_Operator class]
/*! This method will apply \f$(A^TA)^{-1}\f$ or \f$(AA^T)^{-1}\f$ to \c X, returning \c Y.
\note This method is only defined if \f$A^{-1}\f$ is defined for the given Epetra_Operator.
*/
int ApplyInverse(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const;
//! Returns a character string describing the operator.
const char* Label() const { return "Epetra_Operator applying A^TA or AA^T"; };
//! Returns the current UseTranspose setting [always false for this operator].
bool UseTranspose() const { return (false); };
//! If set true, the transpose of this operator will be applied [not functional for this operator].
int SetUseTranspose(bool /*UseTranspose_in*/) { return 0; };
//! Returns true if this object can provide an approximate inf-norm [always false for this operator].
bool HasNormInf() const { return (false); };
//! Returns the infinity norm of the global matrix [not functional for this operator].
double NormInf() const { return (-1.0); };
//! Returns the Epetra_Comm communicator associated with this operator.
const Epetra_Comm& Comm() const { return Epetra_Op->Comm(); };
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map& OperatorDomainMap() const { return Epetra_Op->OperatorDomainMap(); };
//! Returns the Epetra_Map object associated with the range of this operator.
const Epetra_Map& OperatorRangeMap() const { return Epetra_Op->OperatorRangeMap(); };
private:
//use pragmas to disable false-positive warnings in generating windows sharedlib exports
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<Epetra_Operator> Epetra_Op;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
bool isTrans_;
};
//////////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraSymMVOp---------------------
//
//////////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a symmetric operator from an Epetra_MultiVector.
This class will apply the operation \f$A^TA\f$ [default] or \f$AA^T\f$, for the \c Apply method of the
Epetra_Operator / Anasazi::Operator. The Anasazi::EpetraSymMvOp operator is useful when trying to compute
a few singular values of the Epetra_MultiVector \f$A\f$. The singular values are the square-root of the
eigenvalues of \f$A^TA\f$ and \f$AA^T\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraSymMVOp : public virtual Operator<double> {
public:
//! Basic constructor for applying operator \f$A^TA\f$ [default] or \f$AA^T\f$.
/*! If \c isTrans is false this operator will apply \f$A^TA\f$, else it will apply \f$AA^T\f$.
*/
EpetraSymMVOp(const Teuchos::RCP<const Epetra_MultiVector> &MV,
bool isTrans = false );
//! Destructor
~EpetraSymMVOp() {};
//! Apply method
/*! This method will apply \f$A^TA\f$ or \f$AA^T\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<const Epetra_MultiVector> Epetra_MV;
Teuchos::RCP<const Epetra_Map> MV_localmap;
Teuchos::RCP<const Epetra_BlockMap> MV_blockmap;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
bool isTrans_;
};
//////////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraWSymMVOp---------------------
//
//////////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a weighted operator from an Epetra_MultiVector and Epetra_Operator.
This class will apply the operation \f$A^T*W*A\f$ for the \c Apply method of the
Anasazi::Operator. The Anasazi::EpetraWSymMvOp operator is useful when trying to compute
a few singular values of the Epetra_MultiVector \f$A\f$ under the weighting matrix \f$W\f$.
The singular values are the square-root of the eigenvalues of \f$A^T*W*A\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraWSymMVOp : public virtual Operator<double> {
public:
//! Basic constructor for applying operator \f$A^T*W*A\f$.
EpetraWSymMVOp(const Teuchos::RCP<const Epetra_MultiVector> &MV,
const Teuchos::RCP<Epetra_Operator> &OP );
//! Destructor
~EpetraWSymMVOp() {};
//! Apply method
/*! This method will apply \f$(WA)^T*WA\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<const Epetra_MultiVector> Epetra_MV;
Teuchos::RCP<Epetra_Operator> Epetra_OP;
Teuchos::RCP<Epetra_MultiVector> Epetra_WMV;
Teuchos::RCP<const Epetra_Map> MV_localmap;
Teuchos::RCP<const Epetra_BlockMap> MV_blockmap;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
//////////////////////////////////////////////////////////////////
//
//--------template class AnasaziEpetraW2SymMVOp---------------------
//
//////////////////////////////////////////////////////////////////
/*!
\brief Adapter class for creating a weighted symmetric operator from an Epetra_MultiVector and Epetra_Operator.
This class will apply the operation \f$(WA)^T*WA\f$ for the \c Apply method of the
Anasazi::Operator. The Anasazi::EpetraW2SymMvOp operator is useful when trying to compute
a few singular values of the Epetra_MultiVector \f$A\f$ under the weighting matrix \f$W\f$.
The singular values are the square-root of the eigenvalues of \f$(WA)^T*WA\f$.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
class ANASAZIEPETRA_LIB_DLL_EXPORT EpetraW2SymMVOp : public virtual Operator<double> {
public:
//! Basic constructor for applying operator \f$A^T*W*A\f$.
EpetraW2SymMVOp(const Teuchos::RCP<const Epetra_MultiVector> &MV,
const Teuchos::RCP<Epetra_Operator> &OP );
//! Destructor
~EpetraW2SymMVOp() {};
//! Apply method
/*! This method will apply \f$(WA)^T*WA\f$ to \c X, returning \c Y.
*/
void Apply ( const MultiVec<double>& X, MultiVec<double>& Y ) const;
private:
//use pragmas to disable some false-positive warnings for windows
// sharedlibs export
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4251)
#endif
Teuchos::RCP<const Epetra_MultiVector> Epetra_MV;
Teuchos::RCP<Epetra_Operator> Epetra_OP;
Teuchos::RCP<Epetra_MultiVector> Epetra_WMV;
Teuchos::RCP<const Epetra_Map> MV_localmap;
Teuchos::RCP<const Epetra_BlockMap> MV_blockmap;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
////////////////////////////////////////////////////////////////////
//
// Implementation of the Anasazi::MultiVecTraits for Epetra::MultiVector.
//
////////////////////////////////////////////////////////////////////
/*!
\brief Template specialization of Anasazi::MultiVecTraits class using the Epetra_MultiVector class.
This interface will ensure that any Epetra_MultiVector will be accepted by the Anasazi
templated solvers.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
template<>
class MultiVecTraits<double, Epetra_MultiVector>
{
public:
//! @name Creation methods
//@{
/*! \brief Creates a new empty Epetra_MultiVector containing \c numvecs columns.
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector> Clone( const Epetra_MultiVector& mv, const int numvecs )
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION(numvecs <= 0,std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(mv,numvecs): numvecs must be greater than zero.");
#endif
return Teuchos::rcp( new Epetra_MultiVector(mv.Map(), numvecs) );
}
/*! \brief Creates a new Epetra_MultiVector and copies contents of \c mv into the new vector (deep copy).
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector> CloneCopy( const Epetra_MultiVector& mv )
{ return Teuchos::rcp( new Epetra_MultiVector( mv ) ); }
/*! \brief Creates a new Epetra_MultiVector and copies the selected contents of \c mv into the new vector (deep copy).
The copied vectors from \c mv are indicated by the \c indeX.size() indices in \c index.
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector> CloneCopy( const Epetra_MultiVector& mv, const std::vector<int>& index )
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION(index.size() == 0,std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(mv,index): numvecs must be greater than zero.");
TEST_FOR_EXCEPTION( *std::min_element(index.begin(),index.end()) < 0, std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(mv,index): indices must be >= zero.");
TEST_FOR_EXCEPTION( *std::max_element(index.begin(),index.end()) >= mv.NumVectors(), std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(mv,index): indices must be < mv.NumVectors().");
#endif
std::vector<int>& tmp_index = const_cast<std::vector<int> &>( index );
return Teuchos::rcp( new Epetra_MultiVector(::Copy, mv, &tmp_index[0], index.size()) );
}
/*! \brief Creates a new Epetra_MultiVector that shares the selected contents of \c mv (shallow copy).
The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
\return Reference-counted pointer to the new Epetra_MultiVector.
*/
static Teuchos::RCP<Epetra_MultiVector> CloneViewNonConst( Epetra_MultiVector& mv, const std::vector<int>& index )
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION(index.size() == 0,std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::CloneViewNonConst(mv,index): numvecs must be greater than zero.");
TEST_FOR_EXCEPTION( *std::min_element(index.begin(),index.end()) < 0, std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::CloneViewNonConst(mv,index): indices must be >= zero.");
TEST_FOR_EXCEPTION( *std::max_element(index.begin(),index.end()) >= mv.NumVectors(), std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::CloneViewNonConst(mv,index): indices must be < mv.NumVectors().");
#endif
std::vector<int>& tmp_index = const_cast<std::vector<int> &>( index );
return Teuchos::rcp( new Epetra_MultiVector(::View, mv, &tmp_index[0], index.size()) );
}
/*! \brief Creates a new const Epetra_MultiVector that shares the selected contents of \c mv (shallow copy).
The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
\return Reference-counted pointer to the new const Epetra_MultiVector.
*/
static Teuchos::RCP<const Epetra_MultiVector> CloneView( const Epetra_MultiVector& mv, const std::vector<int>& index )
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION(index.size() == 0,std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(const mv,index): numvecs must be greater than zero.");
TEST_FOR_EXCEPTION( *std::min_element(index.begin(),index.end()) < 0, std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(const mv,index): indices must be >= zero.");
TEST_FOR_EXCEPTION( *std::max_element(index.begin(),index.end()) >= mv.NumVectors(), std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::Clone(const mv,index): indices must be < mv.NumVectors().");
#endif
std::vector<int>& tmp_index = const_cast<std::vector<int> &>( index );
return Teuchos::rcp( new Epetra_MultiVector(::View, mv, &tmp_index[0], index.size()) );
}
//@}
//! @name Attribute methods
//@{
//! Obtain the vector length of \c mv.
static int GetVecLength( const Epetra_MultiVector& mv )
{ return mv.GlobalLength(); }
//! Obtain the number of vectors in \c mv
static int GetNumberVecs( const Epetra_MultiVector& mv )
{ return mv.NumVectors(); }
//@}
//! @name Update methods
//@{
/*! \brief Update \c mv with \f$ \alpha AB + \beta mv \f$.
*/
static void MvTimesMatAddMv( double alpha, const Epetra_MultiVector& A,
const Teuchos::SerialDenseMatrix<int,double>& B,
double beta, Epetra_MultiVector& mv )
{
Epetra_LocalMap LocalMap(B.numRows(), 0, mv.Map().Comm());
Epetra_MultiVector B_Pvec(::View, LocalMap, B.values(), B.stride(), B.numCols());
TEST_FOR_EXCEPTION( mv.Multiply( 'N', 'N', alpha, A, B_Pvec, beta )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvNorm call to Epetra_MultiVector::Multiply() returned a nonzero value.");
}
/*! \brief Replace \c mv with \f$\alpha A + \beta B\f$.
*/
static void MvAddMv( double alpha, const Epetra_MultiVector& A, double beta, const Epetra_MultiVector& B, Epetra_MultiVector& mv )
{
// epetra mv.Update(alpha,A,beta,B,gamma) will check
// alpha == 0.0
// and
// beta == 0.0
// and based on this will call
// mv.Update(beta,B,gamma)
// or
// mv.Update(alpha,A,gamma)
//
// mv.Update(alpha,A,gamma)
// will then check for one of
// gamma == 0
// or
// gamma == 1
// or
// alpha == 1
// in that order. however, it will not look for the combination
// alpha == 1 and gamma = 0
// which is a common use case when we wish to assign
// mv = A (in which case alpha == 1, beta == gamma == 0)
// or
// mv = B (in which case beta == 1, alpha == gamma == 0)
//
// therefore, we will check for these use cases ourselves
if (beta == 0.0) {
if (alpha == 1.0) {
// assign
mv = A;
}
else {
// single update
TEST_FOR_EXCEPTION( mv.Update( alpha, A, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvAddMv call to Epetra_MultiVector::Update(alpha,A,0.0) returned a nonzero value.");
}
}
else if (alpha == 0.0) {
if (beta == 1.0) {
// assign
mv = B;
}
else {
// single update
TEST_FOR_EXCEPTION( mv.Update( beta, B, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvAddMv call to Epetra_MultiVector::Update(beta,B,0.0) returned a nonzero value.");
}
}
else {
// double update
TEST_FOR_EXCEPTION( mv.Update( alpha, A, beta, B, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvAddMv call to Epetra_MultiVector::Update(alpha,A,beta,B,0.0) returned a nonzero value.");
}
}
/*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$ \alpha A^Tmv \f$.
*/
static void MvTransMv( double alpha, const Epetra_MultiVector& A, const Epetra_MultiVector& mv, Teuchos::SerialDenseMatrix<int,double>& B
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
)
{
Epetra_LocalMap LocalMap(B.numRows(), 0, mv.Map().Comm());
Epetra_MultiVector B_Pvec(::View, LocalMap, B.values(), B.stride(), B.numCols());
TEST_FOR_EXCEPTION( B_Pvec.Multiply( 'T', 'N', alpha, A, mv, 0.0 )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvTransMv call to Epetra_MultiVector::Multiply() returned a nonzero value.");
}
/*! \brief Compute a vector \c b where the components are the individual dot-products of the \c i-th columns of \c A and \c mv, i.e.\f$b[i] = A[i]^Tmv[i]\f$.
*/
static void MvDot( const Epetra_MultiVector& A, const Epetra_MultiVector& B, std::vector<double> &b
#ifdef HAVE_ANASAZI_EXPERIMENTAL
, ConjType conj = Anasazi::CONJ
#endif
)
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION(A.NumVectors() != B.NumVectors(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::MvDot(A,B,b): A and B must have the same number of vectors.");
TEST_FOR_EXCEPTION(b.size() != (unsigned int)A.NumVectors(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::MvDot(A,B,b): b must have room for all dot products.");
#endif
TEST_FOR_EXCEPTION( A.Dot( B, &b[0] )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvDot(A,B,b) call to Epetra_MultiVector::Dot() returned a nonzero value.");
}
//@}
//! @name Norm method
//@{
/*! \brief Compute the 2-norm of each individual vector of \c mv.
Upon return, \c normvec[i] holds the value of \f$||mv_i||_2\f$, the \c i-th column of \c mv.
*/
static void MvNorm( const Epetra_MultiVector& mv, std::vector<double> &normvec )
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION((unsigned int)mv.NumVectors() != normvec.size(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::MvNorm(mv,normvec): normvec must be the same size of mv.");
#endif
TEST_FOR_EXCEPTION( mv.Norm2(&normvec[0])!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvNorm call to Epetra_MultiVector::Norm2() returned a nonzero value.");
}
//@}
//! @name Initialization methods
//@{
/*! \brief Copy the vectors in \c A to a set of vectors in \c mv indicated by the indices given in \c index.
*/
static void SetBlock( const Epetra_MultiVector& A, const std::vector<int>& index, Epetra_MultiVector& mv )
{
TEST_FOR_EXCEPTION((unsigned int)A.NumVectors() != index.size(),std::invalid_argument,
"Anasazi::MultiVecTraits<double,Epetra_MultiVector>::SetBlock(A,index,mv): index must be the same size as A");
Teuchos::RCP<Epetra_MultiVector> mv_sub = CloneViewNonConst(mv,index);
*mv_sub = A;
}
/*! \brief Scale each element of the vectors in \c mv with \c alpha.
*/
static void MvScale ( Epetra_MultiVector& mv, double alpha )
{
TEST_FOR_EXCEPTION( mv.Scale( alpha )!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvScale call to Epetra_MultiVector::Scale(mv,double alpha) returned a nonzero value.");
}
/*! \brief Scale each element of the \c i-th vector in \c mv with \c alpha[i].
*/
static void MvScale ( Epetra_MultiVector& mv, const std::vector<double>& alpha )
{
// Check to make sure the vector is as long as the multivector has columns.
int numvecs = mv.NumVectors();
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION( alpha.size() != (unsigned int)numvecs, std::invalid_argument,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvScale(mv,vector alpha): size of alpha inconsistent with number of vectors in mv.")
#endif
for (int i=0; i<numvecs; i++) {
TEST_FOR_EXCEPTION( mv(i)->Scale(alpha[i])!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvScale call to Epetra_MultiVector::Scale() returned a nonzero value.");
}
}
/*! \brief Replace the vectors in \c mv with random vectors.
*/
static void MvRandom( Epetra_MultiVector& mv )
{
TEST_FOR_EXCEPTION( mv.Random()!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvRandom call to Epetra_MultiVector::Random() returned a nonzero value.");
}
/*! \brief Replace each element of the vectors in \c mv with \c alpha.
*/
static void MvInit( Epetra_MultiVector& mv, double alpha = Teuchos::ScalarTraits<double>::zero() )
{
TEST_FOR_EXCEPTION( mv.PutScalar(alpha)!=0, EpetraMultiVecFailure,
"Anasazi::MultiVecTraits<double, Epetra_MultiVector>::MvInit call to Epetra_MultiVector::PutScalar() returned a nonzero value.");
}
//@}
//! @name Print method
//@{
/*! \brief Print the \c mv multi-vector to the \c os output stream.
*/
static void MvPrint( const Epetra_MultiVector& mv, std::ostream& os )
{ os << mv << std::endl; }
//@}
};
////////////////////////////////////////////////////////////////////
//
// Implementation of the Anasazi::OperatorTraits for Epetra::Operator.
//
////////////////////////////////////////////////////////////////////
/*!
\brief Template specialization of Anasazi::OperatorTraits class using the Epetra_Operator virtual base class and
Epetra_MultiVector class.
This interface will ensure that any Epetra_Operator and Epetra_MultiVector will be accepted by the Anasazi
templated solvers.
\note The Epetra package performs double-precision arithmetic, so the use of Epetra with Anasazi will
only provide a double-precision eigensolver.
*/
template <>
class OperatorTraits < double, Epetra_MultiVector, Epetra_Operator >
{
public:
/*! \brief This method takes the Epetra_MultiVector \c x and
applies the Epetra_Operator \c Op to it resulting in the Epetra_MultiVector \c y.
*/
static void Apply ( const Epetra_Operator& Op,
const Epetra_MultiVector& x,
Epetra_MultiVector& y )
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPTION(x.NumVectors() != y.NumVectors(),std::invalid_argument,
"Anasazi::OperatorTraits<double,Epetra_MultiVector,Epetra_Operator>::Apply(Op,x,y): x and y must have the same number of columns.");
#endif
int ret = Op.Apply(x,y);
TEST_FOR_EXCEPTION(ret != 0, OperatorError,
"Anasazi::OperatorTraits<double,Epetra_Multivector,Epetra_Operator>::Apply(): Error in Epetra_Operator::Apply(). Code " << ret);
}
};
} // end of Anasazi namespace
#endif
// end of file ANASAZI_EPETRA_ADAPTER_HPP
|