This file is indexed.

/usr/include/trilinos/AnasaziBlockKrylovSchurSolMgr.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_BLOCK_KRYLOV_SCHUR_SOLMGR_HPP
#define ANASAZI_BLOCK_KRYLOV_SCHUR_SOLMGR_HPP

/*! \file AnasaziBlockKrylovSchurSolMgr.hpp
 *  \brief The Anasazi::BlockKrylovSchurSolMgr provides a solver manager for the BlockKrylovSchur eigensolver.
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"

#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziSolverUtils.hpp"

#include "AnasaziBlockKrylovSchur.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziBasicOrthoManager.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestWithOrdering.hpp"
#include "AnasaziStatusTestCombo.hpp"
#include "AnasaziStatusTestOutput.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_TimeMonitor.hpp"


/** \example BlockKrylovSchur/BlockKrylovSchurEpetraEx.cpp
    This is an example of how to use the Anasazi::BlockKrylovSchurSolMgr solver manager, using Epetra data structures.
*/

/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExGenAmesos.cpp
    This is an example of how to use the Anasazi::BlockKrylovSchurSolMgr solver manager to solve a generalized eigenvalue problem, using Epetra data stuctures and the Amesos solver package.
*/

/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExGenAztecOO.cpp
    This is an example of how to use the Anasazi::BlockKrylovSchurSolMgr solver manager to solve a generalized eigenvalue problem, using Epetra data stuctures and the AztecOO solver package.
*/

/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExGenBelos.cpp
    This is an example of how to use the Anasazi::BlockKrylovSchurSolMgr solver manager to solve a generalized eigenvalue problem, using Epetra data stuctures and the Belos solver package.
*/

/** \example BlockKrylovSchur/BlockKrylovSchurEpetraExSVD.cpp
    This is an example of how to use the Anasazi::BlockKrylovSchurSolMgr solver manager to compute an SVD, using Epetra data structures.
*/

namespace Anasazi {


/*! \class BlockKrylovSchurSolMgr
 *
 *  \brief The Anasazi::BlockKrylovSchurSolMgr provides a flexible solver manager over the BlockKrylovSchur eigensolver.
 *
 * The solver manager provides to the solver a StatusTestCombo object constructed as follows:<br>
 *    &nbsp;&nbsp;&nbsp;<tt>combo = globaltest OR debugtest</tt><br>
 * where
 *    - \c globaltest terminates computation when global convergence has been detected.<br>
 *      It is encapsulated in a StatusTestWithOrdering object, to ensure that computation is terminated
 *      only after the most significant eigenvalues/eigenvectors have met the convergence criteria.<br>
 *      If not specified via setGlobalStatusTest(), this test is a StatusTestResNorm object which tests the
 *      2-norms of the Ritz residuals relative to the Ritz values.
 *    - \c debugtest allows a user to specify additional monitoring of the iteration, encapsulated in a StatusTest object<br>
 *      If not specified via setDebugStatusTest(), \c debugtest is ignored.<br> 
 *      In most cases, it should return ::Failed; if it returns ::Passed, solve() will throw an AnasaziError exception.
 *
 * Additionally, the solver manager will terminate solve() after a specified number of restarts.
 * 
 * Much of this behavior is controlled via parameters and options passed to the
 * solver manager. For more information, see BlockKrylovSchurSolMgr().

 \ingroup anasazi_solver_framework

 \author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist
 */

template<class ScalarType, class MV, class OP>
class BlockKrylovSchurSolMgr : public SolverManager<ScalarType,MV,OP> {

  private:
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MT;
    
  public:

  //! @name Constructors/Destructor
  //@{ 

  /*! \brief Basic constructor for BlockKrylovSchurSolMgr.
   *
   * This constructor accepts the Eigenproblem to be solved in addition
   * to a parameter list of options for the solver manager. These options include the following:
   *   - Solver parameters
   *      - \c "Which" - a \c string specifying the desired eigenvalues: SM, LM, SR or LR. Default: "LM"
   *      - \c "Block Size" - a \c int specifying the block size to be used by the underlying block Krylov-Schur solver. Default: 1
   *      - \c "Num Blocks" - a \c int specifying the number of blocks allocated for the Krylov basis. Default: 3*nev
   *      - \c "Extra NEV Blocks" - a \c int specifying the number of extra blocks the solver should keep in addition to those
             required to compute the number of eigenvalues requested.  Default: 0
   *      - \c "Maximum Restarts" - a \c int specifying the maximum number of restarts the underlying solver is allowed to perform. Default: 20
   *      - \c "Orthogonalization" - a \c string specifying the desired orthogonalization:  DGKS and SVQB. Default: "SVQB"
   *      - \c "Verbosity" - a sum of MsgType specifying the verbosity. Default: Anasazi::Errors
   *   - Convergence parameters
   *      - \c "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: machine precision.
   *      - \c "Relative Convergence Tolerance" - a \c bool specifying whether residuals norms should be scaled by their eigenvalues for the purposing of deciding convergence. Default: true
   */
  BlockKrylovSchurSolMgr( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
                             Teuchos::ParameterList &pl );

  //! Destructor.
  virtual ~BlockKrylovSchurSolMgr() {};
  //@}
  
  //! @name Accessor methods
  //@{ 

  //! Return the eigenvalue problem.
  const Eigenproblem<ScalarType,MV,OP>& getProblem() const {
    return *_problem;
  }

  //! Get the iteration count for the most recent call to \c solve().
  int getNumIters() const {
    return _numIters;
  }

  /*! \brief Return the Ritz values from the most recent solve.
   */
  std::vector<Value<ScalarType> > getRitzValues() const {
    std::vector<Value<ScalarType> > ret( _ritzValues );
    return ret;
  }

  /*! \brief Return the timers for this object. 
   *
   * The timers are ordered as follows:
   *   - time spent in solve() routine
   *   - time spent restarting
   */
   Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
     return tuple(_timerSolve, _timerRestarting);
   }

  //@}

  //! @name Solver application methods
  //@{ 
    
  /*! \brief This method performs possibly repeated calls to the underlying eigensolver's iterate() routine
   * until the problem has been solved (as decided by the solver manager) or the solver manager decides to 
   * quit.
   *
   * This method calls BlockKrylovSchur::iterate(), which will return either because a specially constructed status test evaluates to ::Passed
   * or an exception is thrown.
   *
   * A return from BlockKrylovSchur::iterate() signifies one of the following scenarios:
   *    - the maximum number of restarts has been exceeded. In this scenario, the solver manager will place\n
   *      all converged eigenpairs into the eigenproblem and return ::Unconverged.
   *    - global convergence has been met. In this case, the most significant NEV eigenpairs in the solver and locked storage  \n
   *      have met the convergence criterion. (Here, NEV refers to the number of eigenpairs requested by the Eigenproblem.)    \n
   *      In this scenario, the solver manager will return ::Converged.
   *
   * \returns ::ReturnType specifying:
   *     - ::Converged: the eigenproblem was solved to the specification required by the solver manager.
   *     - ::Unconverged: the eigenproblem was not solved to the specification desired by the solver manager.
  */
  ReturnType solve();

  //! Set the status test defining global convergence.
  void setGlobalStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &global);

  //! Get the status test defining global convergence.
  const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getGlobalStatusTest() const;

  //! Set the status test for debugging.
  void setDebugStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &debug);

  //! Get the status test for debugging.
  const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getDebugStatusTest() const;

  //@}

  private:
  Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > _problem;
  Teuchos::RCP<SortManager<MagnitudeType> > _sort;

  std::string _whch, _ortho; 
  MagnitudeType _ortho_kappa;

  MagnitudeType _convtol;
  int _maxRestarts;
  bool _relconvtol,_conjSplit;
  int _blockSize, _numBlocks, _stepSize, _nevBlocks, _xtra_nevBlocks;
  int _numIters;
  int _verbosity;
  bool _inSituRestart;

  std::vector<Value<ScalarType> > _ritzValues;

  Teuchos::RCP<Teuchos::Time> _timerSolve, _timerRestarting;

  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > globalTest_;
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > debugTest_;

  int _printNum;
};


// Constructor
template<class ScalarType, class MV, class OP>
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::BlockKrylovSchurSolMgr( 
        const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
        Teuchos::ParameterList &pl ) : 
  _problem(problem),
  _whch("LM"),
  _ortho("SVQB"),
  _ortho_kappa(-1.0),
  _convtol(0),
  _maxRestarts(20),
  _relconvtol(true),
  _conjSplit(false),
  _blockSize(0),
  _numBlocks(0),
  _stepSize(0),
  _nevBlocks(0),
  _xtra_nevBlocks(0),
  _numIters(0),
  _verbosity(Anasazi::Errors),
  _inSituRestart(false),
  _timerSolve(Teuchos::TimeMonitor::getNewTimer("BlockKrylovSchurSolMgr::solve()")),
  _timerRestarting(Teuchos::TimeMonitor::getNewTimer("BlockKrylovSchurSolMgr restarting")),
  _printNum(-1)
{
  TEST_FOR_EXCEPTION(_problem == Teuchos::null,               std::invalid_argument, "Problem not given to solver manager.");
  TEST_FOR_EXCEPTION(!_problem->isProblemSet(),               std::invalid_argument, "Problem not set.");
  TEST_FOR_EXCEPTION(_problem->getInitVec() == Teuchos::null, std::invalid_argument, "Problem does not contain initial vectors to clone from.");

  const int nev = _problem->getNEV();

  // convergence tolerance
  _convtol = pl.get("Convergence Tolerance",MT::prec());
  _relconvtol = pl.get("Relative Convergence Tolerance",_relconvtol);
  
  // maximum number of restarts
  _maxRestarts = pl.get("Maximum Restarts",_maxRestarts);

  // block size: default is 1
  _blockSize = pl.get("Block Size",1);
  TEST_FOR_EXCEPTION(_blockSize <= 0, std::invalid_argument,
                     "Anasazi::BlockKrylovSchurSolMgr: \"Block Size\" must be strictly positive.");

  // set the number of blocks we need to save to compute the nev eigenvalues of interest.
  _xtra_nevBlocks = pl.get("Extra NEV Blocks",0);
  if (nev%_blockSize) {
    _nevBlocks = nev/_blockSize + _xtra_nevBlocks + 1;
  } else {
    _nevBlocks = nev/_blockSize + _xtra_nevBlocks;
  }

  _numBlocks = pl.get("Num Blocks",3*_nevBlocks);
  TEST_FOR_EXCEPTION(_numBlocks <= _nevBlocks, std::invalid_argument,
                     "Anasazi::BlockKrylovSchurSolMgr: \"Num Blocks\" must be strictly positive and large enough to compute the requested eigenvalues.");

  TEST_FOR_EXCEPTION(_numBlocks*_blockSize > MVT::GetVecLength(*_problem->getInitVec()),
                     std::invalid_argument,
                     "Anasazi::BlockKrylovSchurSolMgr: Potentially impossible orthogonality requests. Reduce basis size.");
  
  // step size: the default is _maxRestarts*_numBlocks, so that Ritz values are only computed every restart.
  if (_maxRestarts) {
    _stepSize = pl.get("Step Size", (_maxRestarts+1)*(_numBlocks+1));
  } else {
    _stepSize = pl.get("Step Size", _numBlocks+1);
  }
  TEST_FOR_EXCEPTION(_stepSize < 1, std::invalid_argument,
                     "Anasazi::BlockKrylovSchurSolMgr: \"Step Size\" must be strictly positive.");

  // get the sort manager
  if (pl.isParameter("Sort Manager")) {
    _sort = Teuchos::getParameter<Teuchos::RCP<Anasazi::SortManager<MagnitudeType> > >(pl,"Sort Manager");
  } else {
    // which values to solve for
    _whch = pl.get("Which",_whch);
    TEST_FOR_EXCEPTION(_whch != "SM" && _whch != "LM" && _whch != "SR" && _whch != "LR" && _whch != "SI" && _whch != "LI",
                       std::invalid_argument, "Invalid sorting string.");
    _sort = Teuchos::rcp( new BasicSort<MagnitudeType>(_whch) );
  }

  // which orthogonalization to use
  _ortho = pl.get("Orthogonalization",_ortho);
  if (_ortho != "DGKS" && _ortho != "SVQB") {
    _ortho = "SVQB";
  }

  // which orthogonalization constant to use
  _ortho_kappa = pl.get("Orthogonalization Constant",_ortho_kappa);

  // verbosity level
  if (pl.isParameter("Verbosity")) {
    if (Teuchos::isParameterType<int>(pl,"Verbosity")) {
      _verbosity = pl.get("Verbosity", _verbosity);
    } else {
      _verbosity = (int)Teuchos::getParameter<Anasazi::MsgType>(pl,"Verbosity");
    }
  }

  // restarting technique: V*Q or applyHouse(V,H,tau)
  if (pl.isParameter("In Situ Restarting")) {
    if (Teuchos::isParameterType<bool>(pl,"In Situ Restarting")) {
      _inSituRestart = pl.get("In Situ Restarting",_inSituRestart);
    } else {
      _inSituRestart = ( Teuchos::getParameter<int>(pl,"In Situ Restarting") != 0 );
    }
  }

  _printNum = pl.get<int>("Print Number of Ritz Values",-1);
}


// solve()
template<class ScalarType, class MV, class OP>
ReturnType 
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::solve() {

  const int nev = _problem->getNEV();
  ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
  ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

  Teuchos::BLAS<int,ScalarType> blas;
  Teuchos::LAPACK<int,ScalarType> lapack;
  typedef SolverUtils<ScalarType,MV,OP> msutils;

  //////////////////////////////////////////////////////////////////////////////////////
  // Output manager
  Teuchos::RCP<BasicOutputManager<ScalarType> > printer = Teuchos::rcp( new BasicOutputManager<ScalarType>(_verbosity) );

  //////////////////////////////////////////////////////////////////////////////////////
  // Status tests
  //
  // convergence
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convtest;
  if (globalTest_ == Teuchos::null) {
    convtest = Teuchos::rcp( new StatusTestResNorm<ScalarType,MV,OP>(_convtol,nev,StatusTestResNorm<ScalarType,MV,OP>::RITZRES_2NORM,_relconvtol) );
  }
  else {
    convtest = globalTest_;
  }
  Teuchos::RCP<StatusTestWithOrdering<ScalarType,MV,OP> > ordertest 
    = Teuchos::rcp( new StatusTestWithOrdering<ScalarType,MV,OP>(convtest,_sort,nev) );
  // for a non-short-circuited OR test, the order doesn't matter
  Teuchos::Array<Teuchos::RCP<StatusTest<ScalarType,MV,OP> > > alltests;
  alltests.push_back(ordertest);

  if (debugTest_ != Teuchos::null) alltests.push_back(debugTest_);

  Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > combotest
    = Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>( StatusTestCombo<ScalarType,MV,OP>::OR, alltests) );
  // printing StatusTest
  Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputtest;
  if ( printer->isVerbosity(Debug) ) {
    outputtest = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combotest,1,Passed+Failed+Undefined ) );
  }
  else {
    outputtest = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combotest,1,Passed ) );
  }

  //////////////////////////////////////////////////////////////////////////////////////
  // Orthomanager
  Teuchos::RCP<OrthoManager<ScalarType,MV> > ortho; 
  if (_ortho=="SVQB") {
    ortho = Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>(_problem->getM()) );
  } else if (_ortho=="DGKS") {
    if (_ortho_kappa <= 0) {
      ortho = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>(_problem->getM()) );
    }
    else {
      ortho = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>(_problem->getM(),_ortho_kappa) );
    }
  } else {
    TEST_FOR_EXCEPTION(_ortho!="SVQB"&&_ortho!="DGKS",std::logic_error,"Anasazi::BlockKrylovSchurSolMgr::solve(): Invalid orthogonalization type.");
  }
  
  //////////////////////////////////////////////////////////////////////////////////////
  // Parameter list
  Teuchos::ParameterList plist;
  plist.set("Block Size",_blockSize);
  plist.set("Num Blocks",_numBlocks);
  plist.set("Step Size",_stepSize);
  if (_printNum == -1) {
    plist.set("Print Number of Ritz Values",_nevBlocks*_blockSize);
  }
  else {
    plist.set("Print Number of Ritz Values",_printNum);
  }

  //////////////////////////////////////////////////////////////////////////////////////
  // BlockKrylovSchur solver
  Teuchos::RCP<BlockKrylovSchur<ScalarType,MV,OP> > bks_solver 
    = Teuchos::rcp( new BlockKrylovSchur<ScalarType,MV,OP>(_problem,_sort,printer,outputtest,ortho,plist) );
  // set any auxiliary vectors defined in the problem
  Teuchos::RCP< const MV > probauxvecs = _problem->getAuxVecs();
  if (probauxvecs != Teuchos::null) {
    bks_solver->setAuxVecs( Teuchos::tuple< Teuchos::RCP<const MV> >(probauxvecs) );
  }

  // Create workspace for the Krylov basis generated during a restart
  // Need at most (_nevBlocks*_blockSize+1) for the updated factorization and another block for the current factorization residual block (F).
  //  ---> (_nevBlocks*_blockSize+1) + _blockSize
  // If Hermitian, this becomes _nevBlocks*_blockSize + _blockSize
  // we only need this if there is the possibility of restarting, ex situ
  Teuchos::RCP<MV> workMV;
  if (_maxRestarts > 0) {
    if (_inSituRestart==true) {
      // still need one work vector for applyHouse()
      workMV = MVT::Clone( *_problem->getInitVec(), 1 );
    }
    else { // inSituRestart == false
      if (_problem->isHermitian()) {
        workMV = MVT::Clone( *_problem->getInitVec(), _nevBlocks*_blockSize + _blockSize );
      } else {
        workMV = MVT::Clone( *_problem->getInitVec(), _nevBlocks*_blockSize+1 + _blockSize );
      }
    }
  } else {
    workMV = Teuchos::null;
  }

  // go ahead and initialize the solution to nothing in case we throw an exception
  Eigensolution<ScalarType,MV> sol;
  sol.numVecs = 0;
  _problem->setSolution(sol);

  int numRestarts = 0;
  int cur_nevBlocks = 0;

  // enter solve() iterations
  {
    Teuchos::TimeMonitor slvtimer(*_timerSolve);
  
    // tell bks_solver to iterate
    while (1) {
      try {
        bks_solver->iterate();
    
        ////////////////////////////////////////////////////////////////////////////////////
        //
        // check convergence first
        //
        ////////////////////////////////////////////////////////////////////////////////////
        if (ordertest->getStatus() == Passed ) {
          // we have convergence
          // ordertest->whichVecs() tells us which vectors from solver state are the ones we want
          // ordertest->howMany() will tell us how many
          break;
        }
        ////////////////////////////////////////////////////////////////////////////////////
        //
        // check for restarting, i.e. the subspace is full
        //
        ////////////////////////////////////////////////////////////////////////////////////
        // this is for the Hermitian case, or non-Hermitian conjugate split situation.
        // --> for the Hermitian case the current subspace dimension needs to match the maximum subspace dimension
        // --> for the non-Hermitian case:
        //     --> if a conjugate pair was detected in the previous restart then the current subspace dimension needs to match the
        //         maximum subspace dimension (the BKS solver keeps one extra vector if the problem is non-Hermitian).
        //     --> if a conjugate pair was not detected in the previous restart then the current subspace dimension will be one less
        //         than the maximum subspace dimension.
        else if ( (bks_solver->getCurSubspaceDim() == bks_solver->getMaxSubspaceDim()) ||
                  (!_problem->isHermitian() && !_conjSplit && (bks_solver->getCurSubspaceDim()+1 == bks_solver->getMaxSubspaceDim())) ) {
  
          // Update the Schur form of the projected eigenproblem, then sort it.
          if (!bks_solver->isSchurCurrent()) {
            bks_solver->computeSchurForm( true );

            // Check for convergence, just in case we wait for every restart to check
            outputtest->checkStatus( &*bks_solver );  
          }

          // Don't bother to restart if we've converged or reached the maximum number of restarts
          if ( numRestarts >= _maxRestarts || ordertest->getStatus() == Passed) {
            break; // break from while(1){bks_solver->iterate()}
          }

          // Start restarting timer and increment counter 
          Teuchos::TimeMonitor restimer(*_timerRestarting);
          numRestarts++;
  
          printer->stream(Debug) << " Performing restart number " << numRestarts << " of " << _maxRestarts << std::endl << std::endl;
  
          // Get the most current Ritz values before we continue.
          _ritzValues = bks_solver->getRitzValues();

          // Get the state.
          BlockKrylovSchurState<ScalarType,MV> oldState = bks_solver->getState();

          // Get the current dimension of the factorization
          int curDim = oldState.curDim;

          // Determine if the storage for the nev eigenvalues of interest splits a complex conjugate pair.
          std::vector<int> ritzIndex = bks_solver->getRitzIndex();
          if (ritzIndex[_nevBlocks*_blockSize-1]==1) {
            _conjSplit = true;
            cur_nevBlocks = _nevBlocks*_blockSize+1;
          } else {
            _conjSplit = false;
            cur_nevBlocks = _nevBlocks*_blockSize;
          }

          // Update the Krylov-Schur decomposition

          // Get a view of the Schur vectors of interest.
          Teuchos::SerialDenseMatrix<int,ScalarType> Qnev(Teuchos::View, *(oldState.Q), curDim, cur_nevBlocks);

          // Get a view of the current Krylov basis.
          std::vector<int> curind( curDim );
          for (int i=0; i<curDim; i++) { curind[i] = i; }
          Teuchos::RCP<const MV> basistemp = MVT::CloneView( *(oldState.V), curind );

          // Compute the new Krylov basis: Vnew = V*Qnev
          // 
          // this will occur ex situ in workspace allocated for this purpose (tmpMV)
          // or in situ in the solver's memory space.
          //
          // we will also set a pointer for the location that the current factorization residual block (F),
          // currently located after the current basis in oldstate.V, will be moved to
          //
          Teuchos::RCP<MV> newF;
          if (_inSituRestart) {
            //
            // get non-const pointer to solver's basis so we can work in situ
            Teuchos::RCP<MV> solverbasis = Teuchos::rcp_const_cast<MV>(oldState.V);
            Teuchos::SerialDenseMatrix<int,ScalarType> copyQnev(Qnev);
            // 
            // perform Householder QR of copyQnev = Q [D;0], where D is unit diag. We will want D below.
            std::vector<ScalarType> tau(cur_nevBlocks), work(cur_nevBlocks);
            int info;
            lapack.GEQRF(curDim,cur_nevBlocks,copyQnev.values(),copyQnev.stride(),&tau[0],&work[0],work.size(),&info);
            TEST_FOR_EXCEPTION(info != 0,std::logic_error,
                               "Anasazi::BlockDavidsonSolMgr::solve(): error calling GEQRF during restarting.");
            // we need to get the diagonal of D
            std::vector<ScalarType> d(cur_nevBlocks);
            for (int j=0; j<copyQnev.numCols(); j++) {
              d[j] = copyQnev(j,j);
            }
            if (printer->isVerbosity(Debug)) {
              Teuchos::SerialDenseMatrix<int,ScalarType> R(Teuchos::Copy,copyQnev,cur_nevBlocks,cur_nevBlocks);
              for (int j=0; j<R.numCols(); j++) {
                R(j,j) = SCT::magnitude(R(j,j)) - 1.0;
                for (int i=j+1; i<R.numRows(); i++) {
                  R(i,j) = zero;
                }
              }
              printer->stream(Debug) << "||Triangular factor of Su - I||: " << R.normFrobenius() << std::endl;
            }
            // 
            // perform implicit V*Qnev
            // this actually performs V*[Qnev Qtrunc*M] = [newV truncV], for some unitary M
            // we are interested in only the first cur_nevBlocks vectors of the result
            curind.resize(curDim);
            for (int i=0; i<curDim; i++) curind[i] = i;
            {
              Teuchos::RCP<MV> oldV = MVT::CloneViewNonConst(*solverbasis,curind);
              msutils::applyHouse(cur_nevBlocks,*oldV,copyQnev,tau,workMV);
            }
            // multiply newV*D
            // get pointer to new basis
            curind.resize(cur_nevBlocks);
            for (int i=0; i<cur_nevBlocks; i++) { curind[i] = i; }
            {
              Teuchos::RCP<MV> newV = MVT::CloneViewNonConst( *solverbasis, curind );
              MVT::MvScale(*newV,d);
            }
            // get pointer to new location for F
            curind.resize(_blockSize);
            for (int i=0; i<_blockSize; i++) { curind[i] = cur_nevBlocks + i; }
            newF = MVT::CloneViewNonConst( *solverbasis, curind );
          }
          else {
            // get pointer to first part of work space
            curind.resize(cur_nevBlocks);
            for (int i=0; i<cur_nevBlocks; i++) { curind[i] = i; }
            Teuchos::RCP<MV> tmp_newV = MVT::CloneViewNonConst(*workMV, curind );
            // perform V*Qnev
            MVT::MvTimesMatAddMv( one, *basistemp, Qnev, zero, *tmp_newV );
            tmp_newV = Teuchos::null;
            // get pointer to new location for F
            curind.resize(_blockSize);
            for (int i=0; i<_blockSize; i++) { curind[i] = cur_nevBlocks + i; }
            newF = MVT::CloneViewNonConst( *workMV, curind );
          }

          // Move the current factorization residual block (F) to the last block of newV.
          curind.resize(_blockSize);
          for (int i=0; i<_blockSize; i++) { curind[i] = curDim + i; }
          Teuchos::RCP<const MV> oldF = MVT::CloneView( *(oldState.V), curind );
          for (int i=0; i<_blockSize; i++) { curind[i] = i; }
          MVT::SetBlock( *oldF, curind, *newF );
          newF = Teuchos::null;

          // Update the Krylov-Schur quasi-triangular matrix.
          //
          // Create storage for the new Schur matrix of the Krylov-Schur factorization
          // Copy over the current quasi-triangular factorization of oldState.H which is stored in oldState.S.
          Teuchos::SerialDenseMatrix<int,ScalarType> oldS(Teuchos::View, *(oldState.S), cur_nevBlocks+_blockSize, cur_nevBlocks);
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > newH = 
            Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( oldS ) );
          //
          // Get a view of the B block of the current factorization
          Teuchos::SerialDenseMatrix<int,ScalarType> oldB(Teuchos::View, *(oldState.H), _blockSize, _blockSize, curDim, curDim-_blockSize);
          //
          // Get a view of the a block row of the Schur vectors.
          Teuchos::SerialDenseMatrix<int,ScalarType> subQ(Teuchos::View, *(oldState.Q), _blockSize, cur_nevBlocks, curDim-_blockSize);
          //
          // Get a view of the new B block of the updated Krylov-Schur factorization
          Teuchos::SerialDenseMatrix<int,ScalarType> newB(Teuchos::View, *newH,  _blockSize, cur_nevBlocks, cur_nevBlocks);
          //
          // Compute the new B block.
          blas.GEMM( Teuchos::NO_TRANS, Teuchos::NO_TRANS, _blockSize, cur_nevBlocks, _blockSize, one, 
                     oldB.values(), oldB.stride(), subQ.values(), subQ.stride(), zero, newB.values(), newB.stride() );


          //
          // Set the new state and initialize the solver.
          BlockKrylovSchurState<ScalarType,MV> newstate;
          if (_inSituRestart) {
            newstate.V = oldState.V;
          } else {
            newstate.V = workMV;
          }
          newstate.H = newH;
          newstate.curDim = cur_nevBlocks;
          bks_solver->initialize(newstate);
  
        } // end of restarting
        ////////////////////////////////////////////////////////////////////////////////////
        //
        // we returned from iterate(), but none of our status tests Passed.
        // something is wrong, and it is probably our fault.
        //
        ////////////////////////////////////////////////////////////////////////////////////
        else {
          TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::BlockKrylovSchurSolMgr::solve(): Invalid return from bks_solver::iterate().");
        }
      }
      catch (const AnasaziError &err) {
        printer->stream(Errors) 
          << "Anasazi::BlockKrylovSchurSolMgr::solve() caught unexpected exception from Anasazi::BlockKrylovSchur::iterate() at iteration " << bks_solver->getNumIters() << std::endl
          << err.what() << std::endl
          << "Anasazi::BlockKrylovSchurSolMgr::solve() returning Unconverged with no solutions." << std::endl;
        return Unconverged;
      }
    }

    //
    // free temporary space
    workMV = Teuchos::null;

    // Get the most current Ritz values before we return
    _ritzValues = bks_solver->getRitzValues();

    sol.numVecs = ordertest->howMany();
    std::vector<int> whichVecs = ordertest->whichVecs();

    // Place any converged eigenpairs in the solution container.
    if (sol.numVecs > 0) {

      // Next determine if there is a conjugate pair on the boundary and resize.
      std::vector<int> tmpIndex = bks_solver->getRitzIndex();
      printer->stream(Debug) << "Number of converged eigenpairs (before) = " << sol.numVecs << std::endl;
      for (int i=0; i<sol.numVecs; ++i) {
        printer->stream(Debug) << "whichVecs[" << i << "] = " << whichVecs[i] << ", tmpIndex[" << whichVecs[i] << "] = " << tmpIndex[whichVecs[i]] << std::endl;
      }
      if (tmpIndex[whichVecs[sol.numVecs-1]]==1) {
        printer->stream(Debug) << "There is a conjugate pair on the boundary, resizing sol.numVecs" << std::endl;
	sol.numVecs++;
      }

      bool keepMore = false;
      int numEvecs = sol.numVecs;
      printer->stream(Debug) << "Number of converged eigenpairs (after) = " << sol.numVecs << std::endl;
      if (whichVecs[sol.numVecs-1] > (sol.numVecs-1)) {
	keepMore = true;
	numEvecs = whichVecs[sol.numVecs-1]+1;  // Add 1 to fix zero-based indexing
        printer->stream(Debug) << "keepMore = true; numEvecs = " << numEvecs << std::endl;
      }

      // Next set the number of Ritz vectors that the iteration must compute and compute them.
      bks_solver->setNumRitzVectors(numEvecs);
      bks_solver->computeRitzVectors();

      // If the leading Ritz pairs are the converged ones, get the information 
      // from the iteration to the solution container. Otherwise copy the necessary
      // information using 'whichVecs'.
      if (!keepMore) {
	sol.index = bks_solver->getRitzIndex();
	sol.Evals = bks_solver->getRitzValues();
	sol.Evecs = MVT::CloneCopy( *(bks_solver->getRitzVectors()) );
      }

      // Resize based on the number of solutions being returned and set the number of Ritz
      // vectors for the iteration to compute.
      sol.Evals.resize(sol.numVecs);
      sol.index.resize(sol.numVecs);
 
      // If the converged Ritz pairs are not the leading ones, copy over the information directly.      
      if (keepMore) {
	std::vector<Anasazi::Value<ScalarType> > tmpEvals = bks_solver->getRitzValues();
	for (int vec_i=0; vec_i<sol.numVecs; ++vec_i) {
	  sol.index[vec_i] = tmpIndex[whichVecs[vec_i]];
	  sol.Evals[vec_i] = tmpEvals[whichVecs[vec_i]];
	}
	sol.Evecs = MVT::CloneCopy( *(bks_solver->getRitzVectors()), whichVecs );
      }

      // Set the solution space to be the Ritz vectors at this time.
      sol.Espace = sol.Evecs;
    } 
  }

  // print final summary
  bks_solver->currentStatus(printer->stream(FinalSummary));

  // print timing information
  Teuchos::TimeMonitor::summarize(printer->stream(TimingDetails));

  _problem->setSolution(sol);
  printer->stream(Debug) << "Returning " << sol.numVecs << " eigenpairs to eigenproblem." << std::endl;

  // get the number of iterations performed during this solve.
  _numIters = bks_solver->getNumIters();

  if (sol.numVecs < nev) {
    return Unconverged; // return from BlockKrylovSchurSolMgr::solve() 
  }
  return Converged; // return from BlockKrylovSchurSolMgr::solve() 
}


template <class ScalarType, class MV, class OP>
void 
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::setGlobalStatusTest(
    const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &global) 
{
  globalTest_ = global;
}

template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & 
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::getGlobalStatusTest() const 
{
  return globalTest_;
}

template <class ScalarType, class MV, class OP>
void 
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::setDebugStatusTest(
    const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &debug)
{
  debugTest_ = debug;
}

template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & 
BlockKrylovSchurSolMgr<ScalarType,MV,OP>::getDebugStatusTest() const
{
  return debugTest_;
}

} // end Anasazi namespace

#endif /* ANASAZI_BLOCK_KRYLOV_SCHUR_SOLMGR_HPP */