/usr/include/trilinos/Amesos_Klu.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | // @HEADER
// ***********************************************************************
//
// Amesos: Direct Sparse Solver Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*!
* \file Amesos_Klu.h
*
* \class Amesos_Klu
*
* \brief Interface to KLU internal solver.
*
* \date Last updated on 24-May-05.
*/
#ifndef AMESOS_KLU_H
#define AMESOS_KLU_H
#include "Amesos_ConfigDefs.h"
#include "Amesos_BaseSolver.h"
#include "Amesos_NoCopiable.h"
#include "Amesos_Utils.h"
#include "Amesos_Time.h"
#include "Amesos_Status.h"
#include "Amesos_Control.h"
#include "Epetra_LinearProblem.h"
#include "Epetra_Time.h"
#include "Epetra_Import.h"
#ifdef EPETRA_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_Comm.h"
#endif
#include "Epetra_CrsGraph.h"
#include "Epetra_CrsMatrix.h"
// class EpetraExt::MultiVector_Reindex ;
// class EpetraExt::CrsMatrix_Reindex ;
//! Amesos_Klu: A serial, unblocked code ideal for getting started and for very sparse matrices, such as circuit matrces.
/*!
Class Amesos_Klu is an object-oriented wrapper for KLU. KLU, whose sources
are distributed
within Amesos, is a serial solver for sparse matrices. KLU will solve a
linear system of equations: \f$A X = B\f$, where
<TT>A</TT> is an Epetra_RowMatrix and <TT>X</TT> and <TT>B</TT> are
Epetra_MultiVector objects.
Amesos_Klu computes \f$A^T X = B\f$
more efficiently than \f$>A X = B\f$. The
latter requires a matrix transpose -- which costs both time and space.
KLU is Tim Davis' implementation of Gilbert-Peierl's left-looking
sparse partial pivoting algorithm, with Eisenstat & Liu's symmetric
pruning. Gilbert's version appears as \c [L,U,P]=lu(A) in MATLAB.
It doesn't exploit dense matrix kernels, but it is the only sparse
LU factorization algorithm known to be asymptotically optimal,
in the sense that it takes time proportional to the number of
floating-point operations. It is the precursor to SuperLU,
thus the name ("clark Kent LU"). For very sparse matrices that
do not suffer much fill-in (such as most circuit matrices when
permuted properly) dense matrix kernels do not help, and the
asymptotic run-time is of practical importance.
The \c klu_btf code first permutes the matrix to upper block
triangular form (using two algorithms by Duff and Reid,
MC13 and MC21, in the ACM Collected Algorithms). It then permutes
each block via a symmetric minimum degree ordering (AMD, by Amestoy,
Davis, and Duff). This ordering phase can be done just once
for a sequence of matrices. Next, it factorizes each reordered
block via the klu routine, which also attempts to preserve
diagonal pivoting, but allows for partial pivoting if the diagonal
is to small.
*/
// Amesos_Klu_Pimpl contains a pointer to two structures defined in
// klu.h: klu_symbolic and klu_numeric. This prevents Amesos_Klu.h
// from having to include klu.h.
//
// Doxygen does not handle forward class references well.
#ifndef DOXYGEN_SHOULD_SKIP_THIS
class Amesos_Klu_Pimpl ;
class Amesos_StandardIndex ;
#endif
class Amesos_Klu: public Amesos_BaseSolver,
private Amesos_Time,
private Amesos_NoCopiable,
private Amesos_Utils,
private Amesos_Control,
private Amesos_Status {
public:
//@{ \name Constructors and Destructors
//! Amesos_Klu Constructor.
/*! Creates an Amesos_Klu instance, using an Epetra_LinearProblem,
passing in an already-defined Epetra_LinearProblem object.
Note: The operator in LinearProblem must be an
Epetra_RowMatrix.
*/
Amesos_Klu(const Epetra_LinearProblem& LinearProblem );
//! Amesos_Klu Destructor.
~Amesos_Klu(void);
//@}
//@{ \name Mathematical functions.
int SymbolicFactorization() ;
int NumericFactorization() ;
int Solve();
//@}
//@{ \name
//! Get a pointer to the Problem.
const Epetra_LinearProblem *GetProblem() const { return(Problem_); };
//! Returns true if KLU can handle this matrix shape
/*! Returns true if the matrix shape is one that KLU can
handle. KLU only works with square matrices.
*/
bool MatrixShapeOK() const ;
//! SetUseTranpose(true) is more efficient in Amesos_Klu
/*!
If SetUseTranspose() is set to true,
\f$A^T X = B\f$ is computed.
*/
int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);};
bool UseTranspose() const {return(UseTranspose_);};
const Epetra_Comm & Comm() const {return(GetProblem()->GetOperator()->Comm());};
int SetParameters( Teuchos::ParameterList &ParameterList );
//! Returns the number of symbolic factorizations performed by this object.
int NumSymbolicFact() const { return( Amesos_Status::NumSymbolicFact_ ); }
//! Returns the number of numeric factorizations performed by this object.
int NumNumericFact() const { return( Amesos_Status::NumNumericFact_ ); }
//! Returns the number of solves performed by this object.
int NumSolve() const { return( Amesos_Status::NumSolve_ ); }
//! Prints timing information
void PrintTiming() const;
//! Prints information about the factorization and solution phases.
void PrintStatus() const;
//! Extracts timing information and places in parameter list.
void GetTiming( Teuchos::ParameterList &TimingParameterList ) const { Amesos_Time::GetTiming( TimingParameterList ); }
private:
//@}
//@{ \name Utility methods
/*
CreateLocalMatrixAndExporters - Prepare to convert matrix and vectors to serial
Preconditions:
Problem_ must be set
Postconditions:
UseDataInPlace_ is set to 1 if the input matrix can be used in place, i.e.
1) is entirely stored on process 0
2) range map and domain map are same as the row map
The following are only set if (! UseDataInPlace_ )"
SerialMap_
ImportToSerial_
SerialCrsMatrixA_
SerialMatrix_
*/
int CreateLocalMatrixAndExporters() ;
/*
ExportToSerial
Preconditions:
UseDataInPlace_ must be set
ImportToSerial and SerialCrsMatrixA_ must be set if UseDataInPlace_ != 1
Postconditions
SerialMatrix_ points to a serial version of the matrix
*/
int ExportToSerial() ;
/*
ConvertToKluCRS - Convert matrix to form expected by Klu: Ai, Ap, Aval
Preconditions:
numentries_, RowMatrixA_, ImportToSerial_, StdIndexMatrix_, Reindex_
Postconditions:
SerialCrsMatrixA_
*/
int ConvertToKluCRS(bool firsttime);
/*
PerformSymbolicFactorization - Call Klu to perform symbolic factorization
Preconditions:
UseDataInPlace_ must be set to 1 if the input matrix is entirely stored on process 0
Ap, Ai and Aval point to a compressed row storage version of the input matrix A.
Postconditions:
Symbolic points to an KLU internal opaque object containing the
symbolic factorization and accompanying information.
SymbolicFactorizationOK_ = true;
Note: All action is performed on process 0
Returns non-zero if the symbolic factorization failed
*/
int PerformSymbolicFactorization();
/*
PerformNumericFactorization - Call Klu to perform numeric factorization
Preconditions:
UseDataInPlace_ must be set
Ap, Ai and Aval point to a compressed row storage version of the input matrix A.
Symbolic must be set
Postconditions:
Numeric points to an KLU internal opaque object containing the
numeric factorization and accompanying information.
NumericFactorizationOK_ = true;
Note: All action is performed on process 0
*/
int PerformNumericFactorization();
// @}
int SerialXlda_ ;
#ifdef Bug_8212
int *lose_this_;
#endif
//
// PrivateKluData_ contains pointers to data needed by klu whose
// data structures are defined by klu.h
//
Teuchos::RCP<Amesos_Klu_Pimpl> PrivateKluData_;
Teuchos::RCP<Amesos_StandardIndex> StdIndex_;
Teuchos::RCP<Amesos_StandardIndex> StdIndexRange_;
Teuchos::RCP<Amesos_StandardIndex> StdIndexDomain_;
//! Ap, Ai, Aval form the compressed row storage used by Klu
//! Ai and Aval can point directly into a matrix if it is StorageOptimized(), hence
//! they may either be in vector form or may be a pointer into Epetra_CrsMatrix
//! internals. Ap must always be constructed.
std::vector <int> Ap;
std::vector <int> VecAi;
std::vector <double> VecAval;
double* Aval;
int *Ai;
//! 1 if Problem_->GetOperator() is stored entirely on process 0
int UseDataInPlace_;
//! Number of non-zero entries in Problem_->GetOperator()
int numentries_;
//! Number of rows and columns in the Problem_->GetOperator()
int NumGlobalElements_;
//! Operator converted to a RowMatrix
Epetra_RowMatrix* RowMatrixA_;
//! Operator converted to a CrsMatrix
Epetra_CrsMatrix* CrsMatrixA_;
#if 0
//! Points to an object which reindexes a MultiVector to a contiguous map
Teuchos::RCP<EpetraExt::MultiVector_Reindex> VecTrans_;
//! Points to an object which reindexes a CrsMatrix to a contiguous map
Teuchos::RCP<EpetraExt::CrsMatrix_Reindex> MatTrans_;
//! Points to a Contiguous Map
Teuchos::RCP<Epetra_Map> ContiguousMap_;
#endif
//! Points to a Serial Map (unused if UseDataInPlace_ == 1 )
Teuchos::RCP<Epetra_Map> SerialMap_;
//! Points to a Serial Copy of A (unused if UseDataInPlace_==1)
Teuchos::RCP<Epetra_CrsMatrix> SerialCrsMatrixA_;
//! Points to a Contiguous Copy of A
Epetra_RowMatrix* StdIndexMatrix_ ;
Epetra_MultiVector* StdIndexDomainVector_ ;
Epetra_MultiVector* StdIndexRangeVector_ ;
//! Points to a Serial Copy of A
Epetra_RowMatrix* SerialMatrix_ ;
//! If \c true, no checks are made and the matrix is assume to be distributed
// serially, StorageOptimized, the LHS and RHS are assumed to be available
// when SymbolicFactorization is called and not to change (address or number
// of vectors) thereafter.
bool TrustMe_;
//! Number of vectors in RHS and LHS
int NumVectors_;
//! Pointer to the actual values in the serial version of X and B
double *SerialXBvalues_ ;
double *SerialBvalues_ ;
//! Serial versions of the LHS and RHS (may point to the original vector if serial)
Epetra_MultiVector* SerialB_ ;
Epetra_MultiVector* SerialX_ ;
//! Serial versions of the LHS and RHS (if necessary)
Teuchos::RCP<Epetra_MultiVector> SerialXextract_;
Teuchos::RCP<Epetra_MultiVector> SerialBextract_;
//! If \c true, the transpose of A is used.
bool UseTranspose_;
//! Pointer to the linear system problem.
const Epetra_LinearProblem * Problem_;
//! Only used for RowMatrices to extract copies.
std::vector<int> ColIndicesV_;
//! Only used for RowMatrices to extract copies.
std::vector<double> RowValuesV_;
//! Importer to process 0.
Teuchos::RCP<Epetra_Import> ImportToSerial_;
Teuchos::RCP<Epetra_Import> ImportRangeToSerial_;
Teuchos::RCP<Epetra_Import> ImportDomainToSerial_;
//! Quick access ids for the individual timings
int MtxRedistTime_, MtxConvTime_, VecRedistTime_;
int SymFactTime_, NumFactTime_, SolveTime_, OverheadTime_;
}; // class Amesos_Klu
#endif /* AMESOS_KLU_H */
|