This file is indexed.

/usr/include/trilinos/Amesos_ComponentBaseSolver.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
 I think that Amesos_Component should be an additional interface and
 hence functions which do not differ from the Amesos_BaseSolver class 
 are not included here.
 */
/*
// @HEADER
// ***********************************************************************
// 
//                Amesos: Direct Sparse Solver Package
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER
*/

#ifndef _AMESOS_COMPONENTBASESOLVER_H_
#define _AMESOS_COMPONENTBASESOLVER_H_

#include "Teuchos_ParameterList.hpp"
#include "Epetra_LinearProblem.h"
class Epetra_LinearProblem;
class Epetra_MultiVector;
class Epetra_Map;
class Epetra_Comm;

//! Amesos_ComponentBaseSolver: A pure virtual class for direct solvers to be used within Amesos_Merikos to form a parallel direct solver.

/*! 
    <p>The Amesos_ComponentBaseSolver interface specifies what Amesos_Merikos needs.
Any Amesos class that implements Amesos_ComponentBaseSolver can be used by 
Amesos_Merikos to perform partial solves on subblocks of the matrix. 


    <H1>Member functions added by Amesos_ComponentBaseSolver.</H1> 

    <ul>
    <li>PartialFactorization()
    <ul>
       <li>PartialFactorization performs factors at most the 
first SubMatrixSize_ rows and columns.  
       <li>PartialFactorization delays the factorization of any columns which generate unstable (i.e. too small) pivots. 
       <li>PartialFactorization computes and returns the schur complement.
       <li>PartialFactorization does not need a symbolic factorization phase. 
It uses the permutation given by SetRowPermutation.
    </ul>
    <li>Lsolve performs a raw partial solve, treating the unfactored rows and 
columns as the identity without row or column permutation.  
    <li>Usolve performs a raw partial solve, treating the unfactored rows and 
columns as the identity without row or column permutation.  
    <li>SetRowPermutation - sets the row permutation
    <li>GetRowPermutation - gets the row permutation
    <li>SetColumnPermutation - sets the column permutation
    <li>GetColumnPermutation - gets the column permutation
    <li>SetSubMatrixSize - Sets the maximum number of rows (and columns)
to factor.
    <li>GetSubMatrixSize - Returns the number of rows (and columns) 
actually factored. 
    <li>SchurComplement - Returns the Schur complement, i.e. 
L21(SubMatrixSize+1:MatrixSize,1:SubMatrixSize) *
U12(1:SubMatrixSize,SubMatrixSize+1:MatrixSize)
    </ul>


    <H1>Usage Examples</H1> 

    <H2>Basic calling sequence</H2> 

<pre>
    Epetra_LinearProblem Problem(A,X,B);
    Amesos_SolverName Solver(Problem);

    Solver.PartialFactorization() ; 
      ... Ancestor factorization
    Solver.Lsolve() ; 
      ... Ancestor solves
    Solver.Usolve() ; 
</pre>

    <H2>Preconditions:
<ul>
<li>An ordering 
</ul>
    <H2>Postconditions:

    <H2>Constructor requirements</H2>
    Every Amesos_SolverName class should accept an
    Epetra_LinearProblem 


*/    

class Amesos_ComponentBaseSolver: public virtual Amesos_BaseSolver {
      
 public:

  //@{ \name Destructor.
    //! Destructor
    virtual ~Amesos_ComponentBaseSolver() {};
  //@}
  
  //@{ \name Mathematical functions.


    //! Performs partial factorization on the matrix A.
    /*! 
      Partial Factorization perfom

     \return Integer error code, set to 0 if successful.
  */
    virtual int PartialFactorization() = 0;

    //! Solves L X = B (or L<SUP>T</SUP> x = B) 
    /*! 


     \return Integer error code, set to 0 if successful.
  */
    virtual int Lsolve() = 0;

    //! Solves the triangular part of L X1 = B (or L<SUP>T</SUP> x = B) 
    /*! 


     \return Integer error code, set to 0 if successful, -1 if unimplimented.
  */
  */
    virtual int LsolveStart() = 0;
    //! Computes L[begin..end,:] X1
    /*! 
     \return Integer error code, set to 0 if successful, -1 if unimplimented.
  */
    virtual int LsolvePart(int begin, int end) = 0;

    //! Solves U X = B (or U<SUP>T</SUP> x = B) 
    /*! 

     \return Integer error code, set to 0 if successful.
    */

    virtual int Usolve() = 0;


    //! Solves the triangular part of U X1 = B (or L<SUP>T</SUP> x = B) 
    /*! 


     \return Integer error code, set to 0 if successful, -1 if unimplimented.
  */
  */
    virtual int UsolveStart() = 0;
    //! Computes U[:,begin..end] X1
    /*! 
     \return Integer error code, set to 0 if successful, -1 if unimplimented.
  */
    virtual int UsolvePart(int begin, int end) = 0;

    //! Solves U X = B (or U<SUP>T</SUP> x = B) 
    /*! 

     \return Integer error code, set to 0 if successful.
    */
  //@}
  
  //@{ \name Atribute access functions

    //! SetRowPermutation
    virtual int SetRowPermutation( int* RowPermutation ) = 0;

    //! SetColumnPermutation
    virtual int SetColumnPermutation( int* ColumnPermutation ) = 0;

    //! SetSubMatrixSize
    virtual int SetSubMatrixSize( int SubMatrixSize ) = 0;

    //! GetRowPermutation
    /*!
      RowPermutation reflects any row permutations performed by 
      PartialFactorization(). 
      Note:  It is not yet clear whether this row permutation 
      includes the RowPermuation upon input or whether it returns
      only the row permuations performed by the most recent 
      call to PartialFactorization().  In other words, in the 
      absence of pivoting, RowPermutation might be identical to 
      that given by SetRowPermutation() or it might be the 
      identity permutation.
     */
    virtual int GetRowPermutation( int** RowPermutation ) = 0;

    //! GetColumnPermutation
    /*!
      ColumnPermutation reflects any row permutations performed by 
      PartialFactorization(). 
      Note:  It is not yet clear whether this row permutation 
      includes the ColumnPermuation upon input or whether it returns
      only the row permuations performed by the most recent 
      call to PartialFactorization().  In other words, in the 
      absence of pivoting, ColumnPermutation might be identical to 
      that given by SetColumnPermutation() or it might be the 
      identity permutation.
     */
    virtual int GetColumnPermutation( int** ColumnPermutation ) = 0;

    //! GetSubMatrixSize
    /* 
       SubMatrixSize is the number of rows and columns in the matrix
       that was factored.  (i.e. the number of columns of L and the
       number of rows of U)
    */
    virtual int GetSubMatrixSize( int* SubMatrixSize ) = 0;

    //! GetSchurComplement
    /*
      SchurComplement is a square matrix with each side having size
      MatrixSize-SubMatrixSize which contains the Schur 
      complement based on the matrices L and U, i.e.
        L(SubMatrixSize+1:MatrixSize,1:SubMatrixSize) *
        U(1:SubMatrixSize,SubMatrixSize+1:MatrixSize)
     */ 
    virtual int GetSchurComplement( Epetra_CrsMatrix* SchurComplement ) = 0;

  //@}

};

#endif /* _AMESOS_COMPONENTBASESOLVER_H_ */