This file is indexed.

/usr/include/trilinos/AbstractLinAlgPack_SparseVectorOpDef.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER
//
// The declarations for these functions is in the file AbstractLinAlgPack_SparseVectorOpDecl.hpp
// but because of a bug with the MS VC++ 5.0 compiler you can not use
// namespace qualification with definitions of previously declared
// nonmember template funcitons.  By not including the declarations
// and by including this file for automatic instantiation, then
// if the function prototypes are not the same then a compile
// time error is more likely to occur.  Otherwise you could have
// to settle for a compile-time warning that the funciton has
// not been defined or a link-time error that the definition
// could not be found which will be the case when explicit
// instantiation is used.

// ToDo: 6/9/98 Finish upgrade

#ifndef SPARSE_VECTOR_OP_DEF_H
#define SPARSE_VECTOR_OP_DEF_H

#include "AbstractLinAlgPack_Types.hpp"
#include "AbstractLinAlgPack_SparseVectorClass.hpp"
#include "DenseLinAlgPack_DVectorOp.hpp"
#include "DenseLinAlgPack_DMatrixAsTriSym.hpp"	// also included in AbstractLinAlgPack_SparseVectorOpDef.hpp
#include "DenseLinAlgPack_DMatrixClass.hpp"
#include "DenseLinAlgPack_AssertOp.hpp"

namespace {
template< class T >
inline
T my_my_max( const T& v1, const T& v2 ) { return v1 > v2 ? v1 : v2; }
template< class T >
inline
T my_my_min( const T& v1, const T& v2 ) { return v1 < v2 ? v1 : v2; }
} // end namespace

namespace AbstractLinAlgPack {

using DenseLinAlgPack::VopV_assert_sizes;
using DenseLinAlgPack::Vp_V_assert_sizes;
using DenseLinAlgPack::Vp_MtV_assert_sizes;

using DenseLinAlgPack::row;
using DenseLinAlgPack::col;

namespace SparseVectorUtilityPack {
template<class T_SpVec>
value_type imp_dot2_V_V_SV(const DVectorSlice& vs1, const DVectorSlice& vs2, const T_SpVec& sv);
}

// result = dot(vs_rhs1,sv_rhs2)
template<class T_SpVec>
value_type dot_V_SV(const DVectorSlice& vs_rhs1, const T_SpVec& sv_rhs2) {
  VopV_assert_sizes(vs_rhs1.dim(),sv_rhs2.dim());
  value_type result = 0.0;
  typename T_SpVec::difference_type offset = sv_rhs2.offset();
  for(typename T_SpVec::const_iterator iter = sv_rhs2.begin(); iter != sv_rhs2.end(); ++iter)
    result += vs_rhs1(iter->index()+offset) * iter->value();
  return result;
}

// result = dot(sv_rhs1,vs_rhs2).  Just call the above in reverse order
template<class T_SpVec>
value_type dot_SV_V(const T_SpVec& sv_rhs1, const DVectorSlice& vs_rhs2) {
  return dot_V_SV(vs_rhs2,sv_rhs1);
}

// result = ||sv_rhs||1
template<class T_SpVec>
value_type norm_1_SV(const T_SpVec& sv_rhs) {
  typename T_SpVec::element_type::value_type result = 0.0;
  for(typename T_SpVec::const_iterator iter = sv_rhs.begin(); iter != sv_rhs.end(); ++iter)
    result += ::fabs(iter->value());
  return result;
}

// result = ||sv_rhs||2
template<class T_SpVec>
value_type norm_2_SV(const T_SpVec& sv_rhs) {
  typename T_SpVec::element_type::value_type result = 0.0;
  for(typename T_SpVec::const_iterator iter = sv_rhs.begin(); iter != sv_rhs.end(); ++iter)
    result += (iter->value()) * (iter->value());
  return result;
}

// result = ||sv_rhs||inf
template<class T_SpVec>
value_type norm_inf_SV(const T_SpVec& sv_rhs) {
  typename T_SpVec::element_type::value_type result = 0.0;
  for(typename T_SpVec::const_iterator iter = sv_rhs.begin(); iter != sv_rhs.end(); ++iter)
    result = my_my_max(result,std::fabs(iter->value()));
  return result;
}

// result = max(sv_rhs)
template<class T_SpVec>
value_type max_SV(const T_SpVec& sv_rhs) {
  typename T_SpVec::element_type::value_type result = 0.0;
  for(typename T_SpVec::const_iterator iter = sv_rhs.begin(); iter != sv_rhs.end(); ++iter)
    result = my_my_max(iter->value(),result);
  return result;
}

// result = min(sv_rhs)
template<class T_SpVec>
value_type min_SV(const T_SpVec& sv_rhs) {
  typename T_SpVec::element_type::value_type result = 0.0;
  for(typename T_SpVec::const_iterator iter = sv_rhs.begin(); iter != sv_rhs.end(); ++iter)
    result = my_my_min(result,iter->value());
  return result;
}

// vs_lhs += alpha * sv_rhs (BLAS xAXPY)
template<class T_SpVec>
void Vt_S( T_SpVec* sv_lhs, value_type alpha )
{
  if( alpha == 1.0 ) return;
  for(typename T_SpVec::iterator iter = sv_lhs->begin(); iter != sv_lhs->end(); ++iter)
    iter->value() *= alpha;
}

// vs_lhs += alpha * sv_rhs (BLAS xAXPY)
template<class T_SpVec>
void Vp_StSV(DVectorSlice* vs_lhs, value_type alpha, const T_SpVec& sv_rhs)
{
  Vp_V_assert_sizes(vs_lhs->dim(),sv_rhs.dim());
  typename T_SpVec::difference_type offset = sv_rhs.offset();
  for(typename T_SpVec::const_iterator iter = sv_rhs.begin(); iter != sv_rhs.end(); ++iter)
    (*vs_lhs)(iter->index() + offset) += alpha * iter->value();
}

// vs_lhs += alpha * op(gms_rhs1) * sv_rhs2 (BLAS xGEMV) (time = O(sv_rhs2.nz() * vs_lhs.dim())
template<class T_SpVec>
void Vp_StMtSV(DVectorSlice* pvs_lhs, value_type alpha, const DMatrixSlice& gms_rhs1
  , BLAS_Cpp::Transp trans_rhs1, const T_SpVec& sv_rhs2)
{
#ifdef _WINDOWS
  using DenseLinAlgPack::Vp_StV;	// MS VC++ 6.0 needs help with the name lookups
#endif
  DVectorSlice& vs_lhs = *pvs_lhs;

  Vp_MtV_assert_sizes(vs_lhs.dim(),gms_rhs1.rows(),gms_rhs1.cols(),trans_rhs1
            , sv_rhs2.dim());
  
  // Perform the operation by iterating through the sparse vector and performing
  // all of the operations on it.
  //
  // For sparse element e we do the following:
  //
  // vs_lhs += alpha * e.value() * gms_rhs1.col(e.index());

  typename T_SpVec::difference_type offset = sv_rhs2.offset();

  for(typename T_SpVec::const_iterator sv_rhs2_itr = sv_rhs2.begin(); sv_rhs2_itr != sv_rhs2.end(); ++sv_rhs2_itr)
    DenseLinAlgPack::Vp_StV( &vs_lhs, alpha * sv_rhs2_itr->value()
            , col( gms_rhs1, trans_rhs1, sv_rhs2_itr->index() + offset ) );
}

// vs_lhs += alpha * op(tri_rhs1) * sv_rhs2 (BLAS xTRMV)
template<class T_SpVec>
void Vp_StMtSV(DVectorSlice* pvs_lhs, value_type alpha, const DMatrixSliceTri& tri_rhs1
  , BLAS_Cpp::Transp trans_rhs1, const T_SpVec& sv_rhs2)
{
  DVectorSlice &vs_lhs = *pvs_lhs;

  Vp_MtV_assert_sizes(vs_lhs.dim(),tri_rhs1.rows(),tri_rhs1.cols(),trans_rhs1
            , sv_rhs2.dim());

  // Get the effective matrix
  BLAS_Cpp::Uplo effective_uplo;
  if( (tri_rhs1.uplo() == BLAS_Cpp::lower && trans_rhs1 == BLAS_Cpp::no_trans) ||
    (tri_rhs1.uplo() == BLAS_Cpp::upper && trans_rhs1 == BLAS_Cpp::trans)		   )
  {
    effective_uplo = BLAS_Cpp::lower;
  }
  else {	// must be effective upper
    effective_uplo = BLAS_Cpp::upper;
  }

  size_type n = tri_rhs1.gms().rows();	// should be same as cols()

  // Implement the operation by looping through the sparse vector only once
  // and performing the row operations.  This gives a time = O(n * sv_rhs2.nz())
  typename T_SpVec::difference_type offset = sv_rhs2.offset();
  for(typename T_SpVec::const_iterator sv_itr = sv_rhs2.begin(); sv_itr != sv_rhs2.end(); ++sv_itr)
  {
    size_type j = sv_itr->index() + offset;

    // For the nonzero element j = sv_itr->index() we perfom the following
    // operations.
    //
    // Lower:
    //		[\]		[\ 0 0 0]	[\]
    //		[#]	 +=	[\ # 0 0] * [#] jth element
    //		[#]		[\ # \ 0]	[\]
    //		[#]		[\ # \ \]	[\]
    //				  jth
    //				  col
    //
    // Upper:
    //		[#]		[\ # \ \]	[\]
    //		[#]	 +=	[0 # \ \] * [#] jth element
    //		[\]		[0 0 \ \]	[\]
    //		[\]		[0 0 0 \]	[\]
    //				  jth
    //				  col
    //
    // If we were told that is it is unit diagonal then we will adjust
    // accordingly.

    size_type j_adjusted = j;	// will be adjusted for unit diagonal
    
    switch(effective_uplo) {
      case BLAS_Cpp::lower: {
        if(tri_rhs1.diag() == BLAS_Cpp::unit)
        {
          // Make the adjustment for unit diaganal
          ++j_adjusted;
          vs_lhs(j) += alpha * sv_itr->value();	// diagonal element is one
        }
        // vs_lhs(j,n) = vs_lhs(j,n) + alpha * sv_itr->value() * tri_rhs1.col(j)(j,n)
        if(j_adjusted <= n)
        {
          DenseLinAlgPack::Vp_StV( &vs_lhs(j_adjusted,n), alpha * sv_itr->value()
            ,col(tri_rhs1.gms(),trans_rhs1,j)(j_adjusted,n) );
        }
        break;
      }
      case BLAS_Cpp::upper: {
        if(tri_rhs1.diag() == BLAS_Cpp::unit)
        {
          // Make the adjustment for unit diaganal
          --j_adjusted;
          vs_lhs(j) += alpha * sv_itr->value();	// diagonal element is one
        }
        // vs_lhs(1,j) = vs_lhs(1,j) + alpha * sv_itr->value() * tri_rhs1.col(j)(1,j)
        if(j_adjusted > 0)
        {
          DenseLinAlgPack::Vp_StV( &vs_lhs(1,j_adjusted), alpha * sv_itr->value()
            ,col(tri_rhs1.gms(),trans_rhs1,j)(1,j_adjusted) );
        }
        break;
      }
    }
  }
}

// vs_lhs += alpha * op(sym_rhs1) * sv_rhs2 (BLAS xSYMV)
template<class T_SpVec>
void Vp_StMtSV(DVectorSlice* pvs_lhs, value_type alpha, const DMatrixSliceSym& sym_rhs1
  , BLAS_Cpp::Transp trans_rhs1, const T_SpVec& sv_rhs2)
{
  DVectorSlice& vs_lhs = *pvs_lhs;

  Vp_MtV_assert_sizes(vs_lhs.dim(),sym_rhs1.rows(),sym_rhs1.cols(),trans_rhs1
            , sv_rhs2.dim());

  size_type size = sv_rhs2.dim();
  switch(sym_rhs1.uplo()) {
    case BLAS_Cpp::lower: {
      DVectorSlice::iterator vs_lhs_itr; size_type i;
      for(vs_lhs_itr = vs_lhs.begin(), i = 1; i <= size; ++i)
      {
        if(i < size) {
          *vs_lhs_itr++ +=
            alpha *
            SparseVectorUtilityPack::imp_dot2_V_V_SV(
                     sym_rhs1.gms().row(i)(1,i)
                    ,sym_rhs1.gms().col(i)(i+1,size)
                    ,sv_rhs2);
        }
        else
          *vs_lhs_itr++ += alpha *
            dot_V_SV(sym_rhs1.gms().row(i),sv_rhs2);
      }
      break;			
    }
    case BLAS_Cpp::upper: {
      DVectorSlice::iterator vs_lhs_itr; size_type i;
      for(vs_lhs_itr = vs_lhs.begin(), i = 1; i <= size; ++i)
      {
        if(i > 1) {
          *vs_lhs_itr++ +=
            alpha *
            SparseVectorUtilityPack::imp_dot2_V_V_SV(
                     sym_rhs1.gms().col(i)(1,i-1)
                    ,sym_rhs1.gms().row(i)(i,size)
                    ,sv_rhs2);
        }
        else
        *vs_lhs_itr++ += alpha * dot_V_SV(sym_rhs1.gms().row(i),sv_rhs2);
      }
      break;			
    }
  }	
}

namespace SparseVectorUtilityPack {

// Implementation for the product of a concatonated dense vector with a
// sparse vector.  Used for symetric matrix mulitplication.
// In Matlab notation: result = [vs1' , vs2' ] * sv
// where split = vs1.dim(), vs2.dim() == sv.dim() - split
//
// time = O(sv.nz()), space = O(1)
//
template<class T_SpVec>
value_type imp_dot2_V_V_SV(const DVectorSlice& vs1, const DVectorSlice& vs2, const T_SpVec& sv)
{
  size_type split = vs1.dim();
  value_type result = 0;
  typename T_SpVec::difference_type offset = sv.offset();
  for(typename T_SpVec::const_iterator sv_itr = sv.begin(); sv_itr != sv.end(); ++sv_itr) {
    typename T_SpVec::element_type::indice_type curr_indice = sv_itr->index()+offset;
    if(curr_indice <= split)
      result += vs1(curr_indice) * sv_itr->value();
    else
      result += vs2(curr_indice - split) * sv_itr->value();
  }
  return result;
}

}	// end namespace SparseVectorUtilityPack

}	// end namespace AbstractLinAlgPack

#endif // SPARSE_VECTOR_OP_DEF_H