This file is indexed.

/usr/include/trilinos/AbstractLinAlgPack_SparseVectorClassDef.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef SPARSE_VECTOR_CLASS_DEF_H
#define SPARSE_VECTOR_CLASS_DEF_H

#include <algorithm>

#include "AbstractLinAlgPack_SparseVectorClassDecl.hpp"
#include "AbstractLinAlgPack_compare_element_indexes.hpp"
#include "Teuchos_TestForException.hpp"

namespace AbstractLinAlgPack {

// Non-member non-public utility functions

// /////////////////////////////////////////////////////////////////////////////////////
// Definitions of non-member functions

template<class T_Element>
SparseVectorSlice<T_Element>
create_slice(const SparseVectorUtilityPack::SpVecIndexLookup<T_Element>& index_lookup
  , size_type size, Range1D rng)
{
  // Check preconditions
  if(rng.full_range()) {
    rng = Range1D(1,size);
  }
  else {
#ifdef TEUCHOS_DEBUG
    TEST_FOR_EXCEPT( !(  rng.ubound() <= size  ) );
#endif
  }

  // If there are no elements then any subregion will also not have any elements.
  if(!index_lookup.nz())
    return SparseVectorSlice<T_Element>(0, 0, 0, rng.ubound() - rng.lbound() + 1, true);

  // Create the slice (assumed sorted oviously).
  typedef SparseVectorUtilityPack::SpVecIndexLookup<T_Element> SpVecIndexLookup;
  index_lookup.validate_state();
  typename SpVecIndexLookup::poss_type
    lower_poss = index_lookup.find_poss(rng.lbound(), SpVecIndexLookup::LOWER_ELE),
    upper_poss = index_lookup.find_poss(rng.ubound(), SpVecIndexLookup::UPPER_ELE);
  if( lower_poss.poss == upper_poss.poss
    && (	lower_poss.rel == SpVecIndexLookup::AFTER_ELE
      ||	upper_poss.rel == SpVecIndexLookup::BEFORE_ELE )
    )
  {
    // The requested subvector does not contain any elements.
    return SparseVectorSlice<T_Element>(0, 0, 0, rng.ubound() - rng.lbound() + 1, true);
  }
  else {
    // There are nonzero elements
    return SparseVectorSlice<T_Element>(index_lookup.ele() + lower_poss.poss
      , upper_poss.poss - lower_poss.poss + 1, index_lookup.offset() - rng.lbound() + 1
      , rng.ubound() - rng.lbound() + 1, true);
  }
}

// /////////////////////////////////////////////////////////////////////////////////////
// Definitions of members for SparseVector<>

template <class T_Element, class T_Alloc>
SparseVector<T_Element,T_Alloc>::SparseVector(
    const SparseVector<T_Element,T_Alloc>& sp_vec )
  :
      alloc_(sp_vec.alloc_), size_(sp_vec.size_), max_nz_(sp_vec.max_nz_)
    , assume_sorted_(sp_vec.assume_sorted_)
    , know_is_sorted_(sp_vec.know_is_sorted_)
{
  // Allocate the memory for the elements and set the memory of the sparse vector.
  index_lookup_.set_sp_vec(
#ifdef _PG_CXX
    new element_type[max_nz_]
#else
    alloc_.allocate(max_nz_,NULL)
#endif
    ,sp_vec.nz(),sp_vec.offset());
  // Perform an uninitialized copy of the elements
  iterator		ele_to_itr		= index_lookup_.ele();
  const_iterator	ele_from_itr	= sp_vec.begin();
  while(ele_from_itr != sp_vec.end()) {
#ifdef _PG_CXX
    new (ele_to_itr++) element_type(*ele_from_itr++);
#else
    alloc_.construct(ele_to_itr++,*ele_from_itr++);
#endif
  }
}

template <class T_Element, class T_Alloc>
SparseVector<T_Element,T_Alloc>::SparseVector(
      SparseVectorSlice<T_Element> sp_vec_slc
    , const allocator_type& alloc )
  :
    alloc_(alloc), size_(sp_vec_slc.dim()), max_nz_(sp_vec_slc.nz())
    , assume_sorted_(sp_vec_slc.is_sorted())
    , know_is_sorted_(false)
{
  // Allocate the memory for the elements and set the memory of the sparse vector.
  index_lookup_.set_sp_vec(
#ifdef _PG_CXX
    new element_type[max_nz_]
#else
    alloc_.allocate(max_nz_,NULL)
#endif
    , sp_vec_slc.nz()
    ,sp_vec_slc.offset() );
  // Perform an uninitialized copy of the elements
  iterator		ele_to_itr		= index_lookup_.ele();
  const_iterator	ele_from_itr	= sp_vec_slc.begin();
  while(ele_from_itr != sp_vec_slc.end()) {
#ifdef _PG_CXX
    new (ele_to_itr++) element_type(*ele_from_itr++);
#else
    alloc_.construct(ele_to_itr++,*ele_from_itr++);
#endif
  }
}

template <class T_Element, class T_Alloc>
SparseVector<T_Element,T_Alloc>&
SparseVector<T_Element,T_Alloc>::operator=(
  const SparseVector<T_Element,T_Alloc>& sp_vec)
{
  if(this == &sp_vec) return *this;	// assignment to self

  know_is_sorted_ = sp_vec.know_is_sorted_;
  assume_sorted_ = sp_vec.assume_sorted_;

  if( max_nz() < sp_vec.nz() ) {
    // need to allocate more storage
    resize(0,0);	// free current storage
    resize(sp_vec.dim(),sp_vec.nz(),sp_vec.offset());
  }
  else if( nz() ) {
    // Don't allocate new memory, just call distructors on current elements
    // and reset to uninitialized.
    for(iterator ele_itr = begin(); ele_itr != end();) {
#ifdef _PG_CXX
      (ele_itr++)->~element_type();
#else
      alloc_.destroy(ele_itr++);
#endif
    }
    // Set the other data
    size_ = sp_vec.size_;
  }
  
  // set nz and offset
  index_lookup_.set_sp_vec(index_lookup_.ele(),sp_vec.nz(),sp_vec.offset()); 

  if( sp_vec.nz() ) {
    // Perform an uninitialized copy of the elements
    iterator		ele_to_itr		= index_lookup_.ele();
    const_iterator	ele_from_itr	= sp_vec.begin();
    while(ele_from_itr != sp_vec.end()) {
#ifdef _PG_CXX
      new (ele_to_itr++) element_type(*ele_from_itr++);
#else
      alloc_.construct(ele_to_itr++,*ele_from_itr++);
#endif
    }
  }

  return *this;
}

template <class T_Element, class T_Alloc>
SparseVector<T_Element,T_Alloc>&
SparseVector<T_Element,T_Alloc>::operator=(
  const SparseVectorSlice<T_Element>& sp_vec_slc )
{
  know_is_sorted_ = false;
  assume_sorted_ = sp_vec_slc.is_sorted();

  if(max_nz() < sp_vec_slc.nz()) {
    // need to allocate more storage
    resize(0,0);	// free current storage
    resize(sp_vec_slc.dim(),sp_vec_slc.nz(),sp_vec_slc.offset());
  }
  else if( nz() ) {
    // Don't allocate new memory, just call distructors on current elements
    // and reset to uninitialized.
    for(iterator ele_itr = begin(); ele_itr != end();) {
#ifdef _PG_CXX
      (ele_itr++)->~element_type();
#else
      alloc_.destroy(ele_itr++);
#endif
    }
    // Set the other data
    size_ = sp_vec_slc.dim();
  }
  
  // set nz and offset
  index_lookup_.set_sp_vec(index_lookup_.ele(),sp_vec_slc.nz()
    ,sp_vec_slc.offset()); 

  if( sp_vec_slc.nz() ) {
    // Perform an uninitialized copy of the elements
    iterator		ele_to_itr		= index_lookup_.ele();
    const_iterator	ele_from_itr	= sp_vec_slc.begin();
    while(ele_from_itr != sp_vec_slc.end()) {
#ifdef _PG_CXX
      new (ele_to_itr++) element_type(*ele_from_itr++);
#else
      alloc_.construct(ele_to_itr++,*ele_from_itr++);
#endif
    }
  }

  return *this;
}

template <class T_Element, class T_Alloc>
EOverLap SparseVector<T_Element,T_Alloc>::overlap(const SparseVectorSlice<T_Element>& sv) const
{
  if(!sv.dim()) return DenseLinAlgPack::NO_OVERLAP;

  const_iterator										this_begin	= begin();
  typename SparseVectorSlice<T_Element>::const_iterator		sv_begin	= sv.begin();

  if( this_begin == sv_begin && end() == sv.end() )
  {
    return DenseLinAlgPack::SAME_MEM;
  }

  if(		( this_begin < sv_begin && end() < sv_begin )
    ||	( sv_begin < this_begin && sv.end() < this_begin )	)
  {
    return DenseLinAlgPack::NO_OVERLAP;
  }

  return DenseLinAlgPack::SOME_OVERLAP;
}

template <class T_Element, class T_Alloc>
void SparseVector<T_Element,T_Alloc>::resize(size_type size, size_type max_nz
  , difference_type offset)
{
  // free existing storage
  if(index_lookup_.ele()) {
    for(element_type* p = index_lookup_.ele(); p < index_lookup_.ele() + index_lookup_.nz(); ++p) {
#ifdef _PG_CXX
      p->~element_type();
#else
      alloc_.destroy(p);
#endif
    }
#ifdef _PG_CXX
    delete [] index_lookup_.ele();
#else
    alloc_.deallocate(index_lookup_.ele(), max_nz_);
#endif
  }
  
  // reinitialize
  max_nz_ = 0;
  know_is_sorted_ = false;

  if(max_nz) {
    // reallocate storage
#ifdef _PG_CXX
    index_lookup_.set_sp_vec( new element_type[max_nz_ = max_nz], 0, offset );
#else
    index_lookup_.set_sp_vec( alloc_.allocate( max_nz_ = max_nz, 0 ), 0, offset );
#endif
    size_ = size;
  }
  else {
    // reinitialize to no storage
    index_lookup_.set_sp_vec( 0, 0, offset );
    size_ = size;	// allow size to be nonzero with nz = 0
  }
}

template <class T_Element, class T_Alloc>
void SparseVector<T_Element,T_Alloc>::uninitialized_resize(size_type size, size_type nz, size_type max_nz
  , difference_type offset)
{
#ifdef TEUCHOS_DEBUG
  TEST_FOR_EXCEPTION(
    nz > max_nz, std::length_error
    ,"SparseVector<...>::uninitialized_resize(...) : nz can not be greater"
    " than max_nz" );
#endif
  resize(size,max_nz,offset);
  index_lookup_.set_sp_vec(index_lookup_.ele(), nz, index_lookup_.offset());
}

template <class T_Element, class T_Alloc>
void SparseVector<T_Element,T_Alloc>::insert_element(element_type ele)
{
  assert_space(1);
  assert_is_sorted();
  // Find the insertion point
  if( nz() ) {
    typedef SparseVectorUtilityPack::SpVecIndexLookup<T_Element> SpVecIndexLookup;
    typedef typename SpVecIndexLookup::poss_type poss_type;
    index_lookup_.validate_state();
    poss_type poss
      = ( nz()
          ? index_lookup_.find_poss(ele.index(), SpVecIndexLookup::LOWER_ELE)
          : poss_type(0,SpVecIndexLookup::BEFORE_ELE)
        );
    // Make sure this element does not already exist!
#ifdef TEUCHOS_DEBUG
    TEST_FOR_EXCEPTION(
      nz() && poss.rel == SpVecIndexLookup::EQUAL_TO_ELE, std::length_error
      ,"SparseVector<...>::insert_element(...) : Error, this index"
      " all ready exists!" );
#endif
    const size_type
      insert_poss = (poss.rel == SpVecIndexLookup::BEFORE_ELE ? poss.poss : poss.poss+1);
    // Copy elements out of the way to make room for inserted element
    std::copy_backward( // This assumes element_type supports assignment!
      index_lookup_.ele() + insert_poss, index_lookup_.ele() + index_lookup_.nz()
      , index_lookup_.ele() + index_lookup_.nz() + 1 );
    index_lookup_.ele()[insert_poss] = ele;
    index_lookup_.incr_nz();
  }
  else { // The first element we are adding!
    index_lookup_.ele()[0] = ele;
    index_lookup_.incr_nz();
  }
}

template <class T_Element, class T_Alloc>
void SparseVector<T_Element,T_Alloc>::sort() {
  if( index_lookup_.nz() > 0 )
    std::stable_sort(begin(),end(),compare_element_indexes_less<element_type>());
  know_is_sorted_ = true;
}

template <class T_Element, class T_Alloc>
void SparseVector<T_Element,T_Alloc>::assert_valid_and_sorted() const
{

  if(!index_lookup_.nz()) return;	// An empty sparse vector is certainly valid

  // Loop through the elements.  If they are sorted then duplicate
  // elements will be adjacent to each other so they will be easy to 
  // find.
  typename T_Element::index_type last_index;
  for(T_Element* p = index_lookup_.ele();
    p < index_lookup_.ele() + index_lookup_.nz(); ++p)
  {
    typename T_Element::index_type curr_index = p->index() + offset();
#ifdef TEUCHOS_DEBUG
    TEST_FOR_EXCEPTION(
      (1 > curr_index) || (curr_index > dim()), std::out_of_range
      ,"SparseVector<...>::assert_valid_and_sorted():"
      << " Error, not in range:  element (0-based) " << p - index_lookup_.ele() - 1
      << " with index + offset = " << curr_index
      << " is not in range" );
#endif
    if(p == index_lookup_.ele()) { // skip these tests for the first element
      last_index = curr_index;
      continue;
    }
#ifdef TEUCHOS_DEBUG
    TEST_FOR_EXCEPTION(
      curr_index < last_index, NotSortedException
      ,"SparseVector<...>::assert_valid_and_sorted():"
      << " Error, not sorted:  element (0-based) " << p - index_lookup_.ele() - 1
      << " and " << p - index_lookup_.ele() << " are not in assending order" );
    TEST_FOR_EXCEPTION(
      curr_index == last_index, DuplicateIndexesException
      ,"SparseVector<...>::assert_valid_and_sorted():"
      << " Error, duplicate indexes:  element (0-based) " << p - index_lookup_.ele() - 1
      << " and " << p - index_lookup_.ele() << " have duplicate indexes" );
#endif
    last_index = curr_index;
  }
}


// /////////////////////////////////////////////////////////////////////////////////////
// Definitions of members for SparseVectorSlice<>

template <class T_Element>
EOverLap SparseVectorSlice<T_Element>::overlap(const SparseVectorSlice<T_Element>& sv) const
{
  if(!sv.dim()) return DenseLinAlgPack::NO_OVERLAP;

  const_iterator					this_begin	= begin(),
                  sv_begin	= sv.begin();

  if( this_begin == sv_begin && end() == sv.end() )
  {
    return DenseLinAlgPack::SAME_MEM;
  }

  if(		( this_begin < sv_begin && end() < sv_begin )
    ||	( sv_begin < this_begin && sv.end() < this_begin )	)
  {
    return DenseLinAlgPack::NO_OVERLAP;
  }

  return DenseLinAlgPack::SOME_OVERLAP;
}

} // end namespace AbstractLinAlgPack 

#endif // SPARSE_VECTOR_CLASS_DEF_H