This file is indexed.

/usr/include/trilinos/AbstractLinAlgPack_SparseVectorClassDecl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef SPARSE_VECTOR_CLASS_DECL_H
#define SPARSE_VECTOR_CLASS_DECL_H

#include <assert.h>

#include <vector>
#include <sstream>

#include "AbstractLinAlgPack_SpVecIndexLookupClass.hpp"

namespace AbstractLinAlgPack {

namespace SparseVectorUtilityPack {

void assert_is_sorted(bool is_sorted);

/** \brief . */
class DoesNotExistException : public std::logic_error
{public: DoesNotExistException(const std::string& what_arg) : std::logic_error(what_arg) {}};
/** \brief . */
class NotSortedException : public std::logic_error
{public: NotSortedException(const std::string& what_arg) : std::logic_error(what_arg) {}};
/** \brief . */
class DuplicateIndexesException : public std::logic_error
{public: DuplicateIndexesException(const std::string& what_arg) : std::logic_error(what_arg) {}};
/** \brief . */
class OutOfRoomException : public std::logic_error
{public: OutOfRoomException(const std::string& what_arg) : std::logic_error(what_arg) {}};
/** \brief . */
class UnsizedException : public std::logic_error
{public: UnsizedException(const std::string& what_arg) : std::logic_error(what_arg) {}};
/** \brief . */
class NoNonZeroElementsException : public std::logic_error
{public: NoNonZeroElementsException(const std::string& what_arg) : std::logic_error(what_arg) {}};

}	// end namespace SparseVectorUtilityPack

// /////////////////////////////////////////////////////////////////////////////////////
/** @name Nonmember untility functions */
//@{

/** \brief Return a sparse vector slice.
  *
  * Preconditions:<ul>
  * <li> index_lookup.validate_state() is called
  * <li> [rng.full_range() != true] rng.ubound() <= size (throw #std::out_of_range#)
  * </ul>
  *
  * Postconditions:<ul>
  * <li> Fill them in latter
  * </ul>
  */
template<class T_Element>
SparseVectorSlice<T_Element> create_slice(
  const SparseVectorUtilityPack::SpVecIndexLookup<T_Element>& index_lookup
  , size_type size, Range1D rng);

//@}

template <class T_Element>
class SparseVectorSlice;

// ///////////////////////////////////////////////////////////////////////
/** \brief Sparse Vector class template.
  *
  * This is a class for abstracting a sparse vector of a templated element
  * type.  All of the operations are based on the element type.  Access
  * to the elements is provided by iterators.  It is also templated by 
  * an allocator that is that is used to allocate memory for the nonzero
  * elements.
  *
  * The templated type T_Element must support the following interface
  * (SparseElementTemplateInterface):
  * \begin{description}
  * <li>[value_type]			public typedef for the stored value of the element
  * <li>[index_type]			public typedef for the stored index of the element
  * <li>[value_type& value()]	function returning a lvalue for the value of the element
  * <li>[value_type value() const] const function returning a rvalue for the value of the element
  * <li>[index_type index() const] const function returning a rvalue for the index
  *										of the element.
  * <li>[T_Element& operator=(const T_Element&)] assignment operator
  * <li>[T_Element(const T_Element&)] copy constructor
  * \end{description}
  */
template <class T_Element, class T_Alloc = std::allocator<T_Element> >
class SparseVector {
public:
  /** @name Public Types. */
  //@{

  /** \brief . */
  typedef T_Alloc											allocator_type;
  /** \brief . */
  typedef T_Element										element_type;
  /** \brief . */
  typedef AbstractLinAlgPack::size_type					size_type;
  /** \brief . */
  typedef ptrdiff_t										difference_type;
  /** \brief . */
  typedef element_type*									iterator;
  /** \brief . */
  typedef const element_type*								const_iterator;

#if 0 /* defined(_WINDOWS) || defined(_INTEL_CXX) */

  typedef std::reverse_iterator<iterator, element_type
    , element_type&, element_type*, difference_type>	reverse_iterator;

  typedef std::reverse_iterator<const_iterator
    , element_type, const element_type&
    , const element_type*, difference_type>				const_reverse_iterator;

#else

  /** \brief . */
  typedef std::reverse_iterator<iterator>					reverse_iterator;
  /** \brief . */
  typedef std::reverse_iterator<const_iterator>			const_reverse_iterator;

#endif

  /** \brief . */
  typedef SparseVectorUtilityPack::DoesNotExistException		DoesNotExistException;
  /** \brief . */
  typedef SparseVectorUtilityPack::NotSortedException			NotSortedException;
  /** \brief . */
  typedef SparseVectorUtilityPack::DuplicateIndexesException	DuplicateIndexesException;
  /** \brief . */
  typedef SparseVectorUtilityPack::OutOfRoomException			OutOfRoomException;
  /** \brief . */
  typedef SparseVectorUtilityPack::UnsizedException			UnsizedException;
  /** \brief . */
  typedef SparseVectorUtilityPack::NoNonZeroElementsException	NoNonZeroElementsException;

  //@}

  /** @name Constuctors */
  //@{

  /** \brief Constructs a sparse vector with no elements (#nz() == dim() == 0#) and
    * assumes the elements are not sorted.
    */
  SparseVector(const allocator_type& alloc = allocator_type());

  /// Constructs a sparse vector with no elements (#nz() == dim() == 0#).
  SparseVector(bool assume_sorted, const allocator_type& alloc = allocator_type());

  /// Constructs a sparse vector of size #size# with storage for #max_nz# elements (#nz() == 0#)
  SparseVector(size_type size, size_type max_nz, difference_type offset = 0
    , bool assume_sorted = false, const allocator_type& alloc = allocator_type());

  /** \brief Constructs a sparse vector from another sparse vector.
    *
    * Copies the complete state including the same max_nz() but a fresh copy
    * of the elements are made.
    */
  SparseVector(const SparseVector<T_Element,T_Alloc>& sp_vec);

  /// Constructs a sparse vector of from a sparse vector slice.
  SparseVector( SparseVectorSlice<T_Element> sp_vec_slc
    , const allocator_type& alloc = allocator_type());

  /// Destructor (frees storage for elements).
  ~SparseVector();

  //@}

  /** \brief Assignment operator.
    *
    * If #max_nz() > sp_vec.nz()# then no new allocation takes place
    * otherwise #this# will will be resized to #sp_vec.nz()#.
    */
  SparseVector<T_Element,T_Alloc>& operator=(const SparseVector<T_Element,T_Alloc>& sp_vec);

  /** \brief Assignment operator.
    *
    * If #max_nz() > sp_vec_slc.nz()# then no new allocation takes place
    * otherwise #this# will will be resized to #sp_vec_slc.nz()#.
    */
  SparseVector<T_Element,T_Alloc>& operator=(const SparseVectorSlice<T_Element>& sp_vec_slc);

  /// 
  /** Returns the degree of memory overlap of this SparseVector and a SparseVectorSlice.
    *
    * @return 
    *		\begin{description}
    *		<li>[NO_OVERLAP]	There is no memory overlap between this and sv
    *		<li>[SOME_OVERLAP]	There is some memory locations that this and sv share
    *		<li>[SAME_MEM]		The DVectorSlice objects this and sv share the exact same memory locations.
    *		\end{description}
    */
  EOverLap overlap(const SparseVectorSlice<T_Element>& sv) const;

  /** @name SparseVectorTemplateInterface for linear algebra operations */
  //@{

  /// Return the number of elements in the full vector
  size_type dim() const;

  /// Return the number of non-zero elements
  size_type nz() const;

  /** \brief Return the offset for the indexes (ith real index = #begin()[i-1]->index() + offset()#
    * , for i = 1,,,#nz()#)
    */
  difference_type offset() const;

  /** \brief Return true if the sequence is sorted.
    *
    * If sorted() was called prior to this then it is garrented to be sorted
    * and if assume_sorted(true) was called then a client is assumed to be
    * responcible for it being sorted by it can not be garrented to be sorted.
    */
  bool is_sorted() const;

  /** @name Iterator access to elements.
    *
    * These functions return random access iterators that yield
    * SparseElementTemplateInterface objects when dereferenced.
    * This is required for the template argument.
    */
  //@{

  /** \brief Returns iterator that iterates forward through the nonzero elements.
    *
    * If #is_sorted() == true# then the elements will be forward iterated in accending
    * indexes.
    */
  iterator begin();

  /** \brief . */
  const_iterator begin() const;

  /// 
  iterator end();

  /** \brief . */
  const_iterator end() const;

  /** \brief Returns iterator that iterates backward through the nonzero elements.
    *
    * If #is_sorted() == true# then the elements will be forward iterated in deaccending
    * indexes.
    */
  reverse_iterator rbegin();

  /** \brief . */
  const_reverse_iterator rbegin() const;

  /// 
  reverse_iterator rend();

  /** \brief . */
  const_reverse_iterator rend() const;
  
  //	end Iterator access to elements
  //@}

  //	end SparseVectorTemplateInterface
  //@}

  /** @name Element setup and modification */
  //@{

  /** \brief Resize to #size# with a maximum of #max_nz# non-zero elements.
    *
    * This does not preserve the existing elements already in the sparse vector.
    * If you pass in #size == 0# or #max_nz == 0# then the storage will be deallocated
    * and no storage will be reallocated. 
    */
  void resize(size_type size, size_type max_nz, difference_type offset = 0);

  /** \brief Resize to #size# with a #max_nz# uninitialized non-zero elements.
    *
    * This function has the same basic behavior as #resize(...)# accept
    * on return #nz()# will equal #nz#.  The elements are initialized
    * to garbage so it is imparative that the client initialize
    * the elements before the sparse vector is used.
    */
  void uninitialized_resize(size_type size, size_type nz, size_type max_nz, difference_type offset = 0);

  /// Return the max number of elements that can be held without resizing
  size_type max_nz() const;

  /** \brief Add an unsorted element.
    *
    * If #nz() = max_nz()#) then the exception OutOfRoomException will be thrown.
    *
    * If you want to add more elements than you have reserved space for in the
    * construction or resize operation then you have to mannually copy the
    * elements in the sparse vector, resize the sparse vector, and then
    * readd the elements including the extra ones you want to add.
    */
  void add_element(element_type ele);

  /** \brief Add an element into a sorted sequence.
    *
    * If #nz() = max_nz()#) then the exception OutOfRoomException will be thrown.
    *
    * If you want to add more elements than you have reserved space for in the
    * construction or resize operation then you have to mannually copy the
    * elements in the sparse vector, resize the sparse vector, and then
    * readd the elements including the extra ones you want to add.
    */
  void insert_element(element_type ele);

  /** \brief Called by the client to inform this sparse vector object that the elements
    * be assumed to be in sequence and it is the clients responcibiliy to make sure
    * that it is.
    */
  void assume_sorted(bool assume_is_sorted);

  /// Sort the elements into assending order by index.
  void sort();

  /** \brief Assert that sparse vector is sorted.
    *
    * This function will throw an exception if any of the following are not true:
    * \begin{enumerate}
    * <li> The sequence is not sorted by index (#NotSortedException#)
    * <li> There are duplicate indexes (#DuplicateIndexesException#)
    * <li> The indexes are out of range (#std::out_of_range#)
    * \end{enumerate}
    *
    * This function will throw an exception for the first error it finds.
    */
  void assert_valid_and_sorted() const;

  //@}

  /** @name Lookup an element.
    *
    * If element v(i) exists, then a pointer to the element will
    * be returned.  If v(i) does not exist, then the NULL pointer
    * will be returned.
    *
    * If i is out of range then a std::out_of_range exception will be
    * thrown.
    * 
    * If the elements are sored then this operation is O(log(nz))
    * for a binary search.  Otherwise, it requries a O(nz) linear
    * search.
    */
  //@{

  /** \brief . */
  element_type* lookup_element(size_type i);
  /** \brief . */
  const element_type* lookup_element(size_type i) const;

  //@}

  /** @name Creating a slice (subregion) of the sparse vector.
    *
    * If the vector is not sorted (#is_sorted() == false#) then all of these
    * functions will throw an exception (#NotSortedException#).
    *
    * ** Say something about the cost of these operations! **
    */
  //@{

  /** \brief Allow an implicit conversion to a SparseVectorSlice<> object.
    *
    * This is a very cheap operation.
    */
  operator SparseVectorSlice<T_Element>();

  /** \brief . */
  operator const SparseVectorSlice<T_Element>() const;

  /** \brief Returns a SparseVectorSlice representing the entire sparse vector.
    *
    * It is used to provide a quick, explicit conversion so that
    * the SparseVector object can be used in functions that
    * expect a SparseVectorSlice object.
    */
  SparseVectorSlice<T_Element> operator()();

  /** \brief . */
  const SparseVectorSlice<T_Element> operator()() const;

  /// 
  /** Returns a continous subregion of the SparseVector object.
    *
    * The returned SparseVectorSlice object represents the range of the rng argument.
    *
    * Preconditions: <ul>
    *		<li> #rng.ubound() - 1 <= this->dim()# (throw #out_of_range#)
    *		<li> #dim() > 0#	(throw #UnsizedException#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> returned#.dim() == rng.ubound() - rng.lbound() + 1#
    *     <li> contains all of the elements in the range.
    *		</ul>
    *
    * @param	rng		Index range [lbound,ubound] of the region being returned.
    */
  SparseVectorSlice<T_Element> operator()(const Range1D& rng);

  /** \brief . */
  const SparseVectorSlice<T_Element> operator()(const Range1D& rng) const;

  /// 
  /** Returns a SparseVectorSlice object for the continous subregion [ubound, lbound].
    * 
    * Preconditions: <ul>
    *		<li> #lbound > 1# (throw #out_of_range#)
    *		<li> #lbound < ubound# (throw #out_of_range#)
    *		<li> #ubound <= this->dim()# (throw #out_of_range#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> returned#.dim() == ubound() - lbound() + 1#
    *     <li> contains all of the elements in the range.
    *		</ul>
    *
    * @param	lbound		Lower bound of range [lbound,ubound] of the region being returned.
    * @param	ubound		Upper bound of range [lbound,ubound] of the region being returned.
    */
  SparseVectorSlice<T_Element> operator()(size_type lbound, size_type ubound);

  /// Same as above.
  const SparseVectorSlice<T_Element> operator()(size_type lbound, size_type ubound) const;

  //@}

private:

  // /////////////////////////////////////////////////////////////////////////
  // Private types

  /** \brief . */
  typedef SparseVectorUtilityPack::SpVecIndexLookup<element_type> SpVecIndexLookup;

  // /////////////////////////////////////////////////////////////////////////
  // Private data members

  allocator_type			alloc_;			// allocator used to allocate memory
  size_type				size_;			// the number of elements in the full vector
  size_type				max_nz_;		// the amount of storage that has been allocated
//  commented out because of problems with MS Visual C++ 5.0
//	std::vector<element_type, allocator_type>	ele_;
  SpVecIndexLookup		index_lookup_;	// Acts as storage for elements and caching of searches.
  bool					assume_sorted_;	// true if the client said that you can assume sorted.
  bool					know_is_sorted_; // true if it has been varified that is sorted.

  // //////////////////////////
  // Private member functions

  // Throw a NotSortedException of is_sorted() == false
  void assert_is_sorted() const {
    SparseVectorUtilityPack::assert_is_sorted(is_sorted());
  }

  /// Assert (#OutOfRoom#) that there is room for n elements.
  void assert_space(size_type n) const {
#ifdef LINALGPACK_CHECK_SLICE_SETUP
    if(index_lookup_.nz() + n > max_nz_)
      throw OutOfRoomException("SparseVector<T_Element,T_Alloc>::assert_space():  There is not storage for this many elements");
#endif
  }

  /// Assert #dim() > 0# (#UnsizedException#) and #index_lookup_.ele() != 0# (#NoNonZeroElementsException#)
  void assert_sized_with_mem_set() const {
    if(!dim())
      throw UnsizedException("SparseVector<...>::assert_sized_with_mem_set() : "
        "Error: The sparse vector is unsized");
    if(!index_lookup_.ele()) {
      throw NoNonZeroElementsException("SparseVector<...>::assert_sized_with_mem_set() : "
        "Error: There is no memory set.");
    }
  }

  /// Return the entire vector slice
  SparseVectorSlice<T_Element> get_whole_sp_vec() {
    return SparseVectorSlice<T_Element>(index_lookup_.ele(), index_lookup_.nz()
          , index_lookup_.offset(), size_, is_sorted());
  }

  /** \brief . */
  const SparseVectorSlice<T_Element> get_whole_sp_vec() const {
    return SparseVectorSlice<T_Element>(index_lookup_.ele(), index_lookup_.nz()
          , index_lookup_.offset(), size_, is_sorted());
  }

  /// Return a SparseVectorSlice (inplementation for indexing operators)
  SparseVectorSlice<T_Element> get_slice(const Range1D& rng) const {
    assert_is_sorted();
    return create_slice(index_lookup_, size_, rng);
  }

};	// end class SparseVector

// ///////////////////////////////////////////////////////////////////////
/** \brief Sparse Vector Slice class template.
  *
  * This is a class for abstracting a region of a sparse vector stored
  * as an array of elements of a templated type.  The required inteface
  * for the type of these elements is given in the SparseVector documentation.
  *
  * Here if nz() == 0 then begin() == end() so it is safe to set up loops
  * in the form of:
  *
  *  for(SparseVectorSlice<T>::const_iterator itr = sv.begin(); itr != sv.end(); ++itr)
  *    // some access of *itr.
  *
  * Note that if nz()==0 then begin() may not point to a valid object so don't do it.
  *
  * The default copy constructor is allowed but the default constructor and
  * assignment operator functions are not.
  */
template <class T_Element>
class SparseVectorSlice {
public:
  /** @name Public types. */
  //@{

  /** \brief . */
  typedef T_Element										element_type;
  /** \brief . */
  typedef AbstractLinAlgPack::size_type					size_type;
  /** \brief . */
  typedef ptrdiff_t										difference_type;
  /** \brief . */
  typedef element_type*									iterator;
  /** \brief . */
  typedef const element_type*								const_iterator;

#if 0 /* defined(_WINDOWS) || defined(_INTEL_CXX) */

  typedef std::reverse_iterator<iterator, element_type
    , element_type&, element_type*, difference_type>	reverse_iterator;

  typedef std::reverse_iterator<const_iterator
    , element_type, const element_type&
    , const element_type*, difference_type>				const_reverse_iterator;

#else

  /** \brief . */
  typedef std::reverse_iterator<iterator>					reverse_iterator;
  /** \brief . */
  typedef std::reverse_iterator<const_iterator>			const_reverse_iterator;

#endif

  /** \brief . */
  typedef SparseVectorUtilityPack::DoesNotExistException	DoesNotExistException;
  /** \brief . */
  typedef SparseVectorUtilityPack::NotSortedException		NotSortedException;

  //@}

  /** @name Constuctors
    *
    * The default copy constructor is allowed since it has the proper semantics.
    */
  //@{

  /** \brief Constructs a sparse vector slice from an array of elements.
    *
    * Here a pointer to an array of elements is used instead of a
    * pointer to std::vector<T_Ele,T_Alloc> in order to insulated
    * this class from the type of allocator used since this information
    * is not needed.
    *
    * A sparse vector slice with no nonzero elements can be constructed by
    * setting nz == 0;
    *
    * Preconditions: <ul>
    *		<li> #ele != 0#
    *		<li> #size >= nz#
    *		</ul>
    *
    * @param	ele		pointer to array of elements (length #nz#)
    * @param	offset	offset for the indexes of the elements. index = ele[i].index() + offset
    * @param	size	number of elements in the full vector
    * @param	nz		number of non-zero elements in vector
    */
  SparseVectorSlice(element_type ele[], size_type nz, difference_type offset, size_type size
    , bool assume_sorted = false);

  //@}

  /** \brief Constructs a sparse vector slice view from another sparse vector slice.
    */
  void bind(SparseVectorSlice svs);

  /// 
  /** Returns the degree of memory overlap of this SparseVector and a SparseVectorSlice.
    *
    * @return 
    *		\begin{description}
    *		<li>[NO_OVERLAP]	There is no memory overlap between this and sv
    *		<li>[SOME_OVERLAP]	There is some memory locations that this and sv share
    *		<li>[SAME_MEM]		The DVectorSlice objects this and sv share the exact same memory locations.
    *		\end{description}
    */
  EOverLap overlap(const SparseVectorSlice<T_Element>& sv) const;

  /** @name Sparse Vector Templated interface for linear algebra operations */
  //@{

  /// Return the number of elements in the full vector
  size_type dim() const;

  /// Return the number of non-zero elements
  size_type nz() const;

  /** \brief Return the offset for the indexes (ith real index = #begin()[i-1]->index() + offset()#
    * , for i = 1,,,#nz()#)
    */
  difference_type offset() const;

  /** \brief Return true if the sequence is assumed sorted.
    */
  bool is_sorted() const;

  /** \brief . */
  iterator begin();

  /** \brief . */
  const_iterator begin() const;

  /// 
  iterator end();

  /** \brief . */
  const_iterator end() const;

  /** \brief . */
  reverse_iterator rbegin();

  /** \brief . */
  const_reverse_iterator rbegin() const;

  /// 
  reverse_iterator rend();

  /** \brief . */
  const_reverse_iterator rend() const;

  //@}

  /** @name Lookup an element.
    *
    * If element v(i) exists, then a pointer to the element will
    * be returned.  If v(i) does not exist, then the NULL pointer
    * will be returned.
    *
    * If i is out of range then a std::out_of_range exception will be
    * thrown.
    * 
    * If the elements are sored then this operation is O(log(nz))
    * for a binary search.  Otherwise, it requries a O(nz) linear
    * search.
    */
  //@{

  /** \brief . */
  element_type* lookup_element(size_type i);
  /** \brief . */
  const element_type* lookup_element(size_type i) const;

  //@}

  /** @name Creating a slice (subregion) of the sparse vector */
  //@{

  /// 
  /** Returns a SparseVectorSlice<> reference to this object.
    *
    * It is included for uniformity with SparseVector.
    */
  SparseVectorSlice<T_Element>& operator()();

  /** \brief . */
  const SparseVectorSlice<T_Element>& operator()() const;

  /// Allow address to be taken of an rvalue of this object
  SparseVectorSlice* operator&()
  {    return this; }

  const SparseVectorSlice* operator&() const
  {    return this; }

  /// 
  /** Returns a continous subregion of the SparseVector object.
    *
    * The returned SparseVectorSlice object represents the range of the rng argument.
    *
    * Preconditions: <ul>
    *		<li> #rng.ubound() - 1 <= this->dim()# (throw #out_of_range#)
    *		<li> #dim() > 0#	(throw #UnsizedException#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> returned#.dim() == rng.ubound() - rng.lbound() + 1#
    *     <li> contains all of the elements in the range.
    *		</ul>
    *
    * @param	rng		Index range [lbound,ubound] of the region being returned.
    */
  SparseVectorSlice<T_Element> operator()(const Range1D& rng);

  /** \brief . */
  const SparseVectorSlice<T_Element> operator()(const Range1D& rng) const;

  /// 
  /** Returns a SparseVectorSlice object for the continous subregion [ubound, lbound].
    * 
    * Preconditions: <ul>
    *		<li> #lbound > 1# (throw #out_of_range#)
    *		<li> #lbound < ubound# (throw #out_of_range#)
    *		<li> #ubound <= this->dim()# (throw #out_of_range#)
    *		</ul>
    *
    * Postconditions: <ul>
    *		<li> returned#.dim() == ubound() - lbound() + 1#
    *     <li> contains all of the elements in the range.
    *		</ul>
    *
    * @param	lbound		Lower bound of range [lbound,ubound] of the region being returned.
    * @param	ubound		Upper bound of range [lbound,ubound] of the region being returned.
    */
  SparseVectorSlice<T_Element> operator()(size_type lbound, size_type ubound);

  /** \brief . */
  const SparseVectorSlice<T_Element> operator()(size_type lbound, size_type ubound) const;

  //@}

private:
  // /////////////////////////////////////////////////////////////////////////
  // Private types

  /** \brief . */
  typedef SparseVectorUtilityPack::SpVecIndexLookup<element_type> index_lookup_type;

  // /////////////////////////////////////////////////////////////////////////
  // Private data members

  index_lookup_type		index_lookup_;	// Acts as storage and cacheing
  size_type				size_;			// size of the full vector
  bool					assume_sorted_;	// true if the client said that you can assume sorted.


  // /////////////////////////////////////////////////////////////////////////
  // Private member functions

  // Throw a NotSortedException of is_sorted() == false
  void assert_is_sorted() const {
    SparseVectorUtilityPack::assert_is_sorted(is_sorted());
  }

  /// Return a SparseVectorSlice (inplementation for indexing operators)
  SparseVectorSlice<T_Element> get_slice(const Range1D& rng) const {
    assert_is_sorted();
    return create_slice(index_lookup_, size_, rng);
  }

  /// Not defined and not to be called
  SparseVectorSlice();
  /// Not defined and not to be called
  SparseVectorSlice<element_type>& operator=(const SparseVectorSlice<element_type>&);

};	// end class SparseVectorSlice

// ////////////////////////////////////////////////
// Non-member non-public utility functions

namespace SparseVectorUtilityPack {

/** \brief Lookup an element.
  *
  * If the element does not exist, then NULL will be returned.
  */
template< class T_Element >
inline const T_Element* lookup_element( const SpVecIndexLookup<T_Element>& index_lookup
  , typename SpVecIndexLookup<T_Element>::index_type index, bool is_sorted )
{
  size_type poss;	
  return ( ( poss = index_lookup.find_element(index,is_sorted) ) < index_lookup.nz() )
    ? index_lookup.ele() + poss
    : NULL;
}

}	// end namespace SparseVectorUtilityPack

// /////////////////////////////////////////////////////////////////////////////////////
// Inline members for SparseVector<>

// constructors

template <class T_Element, class T_Alloc>
inline SparseVector<T_Element,T_Alloc>::SparseVector(const allocator_type& alloc)
  : alloc_(alloc), size_(0), max_nz_(0), assume_sorted_(false), know_is_sorted_(false)
{}

template <class T_Element, class T_Alloc>
inline SparseVector<T_Element,T_Alloc>::SparseVector(bool assume_sorted,const allocator_type& alloc)
  : alloc_(alloc), size_(0), max_nz_(0), assume_sorted_(assume_sorted), know_is_sorted_(false)
{}

template <class T_Element, class T_Alloc>
inline SparseVector<T_Element,T_Alloc>::SparseVector(size_type size, size_type max_nz
    , difference_type offset, bool assume_sorted, const allocator_type& alloc)
  : alloc_(alloc), size_(0), max_nz_(0), assume_sorted_(assume_sorted), know_is_sorted_(false)
{
  resize(size,max_nz,offset);
}

template <class T_Element, class T_Alloc>
inline SparseVector<T_Element,T_Alloc>::~SparseVector() {
  resize(0,0);
}

// SparseVectorTemplateInterface for linear algebra operations

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::size_type SparseVector<T_Element,T_Alloc>::dim() const {
  return size_;
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::size_type SparseVector<T_Element,T_Alloc>::nz() const {
  return index_lookup_.nz();
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::difference_type SparseVector<T_Element,T_Alloc>::offset() const {
  return index_lookup_.offset();
}

template <class T_Element, class T_Alloc>
inline bool SparseVector<T_Element,T_Alloc>::is_sorted() const {
  return nz() <= 1 || assume_sorted_ || know_is_sorted_;
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::iterator SparseVector<T_Element,T_Alloc>::begin() {
  return index_lookup_.nz() ? index_lookup_.ele() : NULL;
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::const_iterator SparseVector<T_Element,T_Alloc>::begin() const {
  return index_lookup_.nz() ? index_lookup_.ele() : NULL;
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::iterator SparseVector<T_Element,T_Alloc>::end() {
  return index_lookup_.nz() ? index_lookup_.ele() + index_lookup_.nz() : NULL;
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::const_iterator SparseVector<T_Element,T_Alloc>::end() const {
  return index_lookup_.nz() ? index_lookup_.ele() + index_lookup_.nz() : NULL;
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::reverse_iterator SparseVector<T_Element,T_Alloc>::rbegin() {
  return reverse_iterator(end());
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::const_reverse_iterator SparseVector<T_Element,T_Alloc>::rbegin() const {
  return const_reverse_iterator(end());
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::reverse_iterator SparseVector<T_Element,T_Alloc>::rend() {
  return reverse_iterator(begin());
}

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::const_reverse_iterator SparseVector<T_Element,T_Alloc>::rend() const {
  return const_reverse_iterator(begin());
}

// Element setup and modification

template <class T_Element, class T_Alloc>
inline typename SparseVector<T_Element,T_Alloc>::size_type SparseVector<T_Element,T_Alloc>::max_nz() const {
  return max_nz_;
}

template <class T_Element, class T_Alloc>
inline void SparseVector<T_Element,T_Alloc>::add_element(element_type ele) {
  assert_space(1);
  assume_sorted_ = know_is_sorted_ = false;
#ifdef _PG_CXX
  new (index_lookup_.ele() + index_lookup_.nz()) element_type;
#else
  alloc_.construct(index_lookup_.ele() + index_lookup_.nz(), ele);
#endif
  index_lookup_.incr_nz();
}

template <class T_Element, class T_Alloc>
inline void SparseVector<T_Element,T_Alloc>::assume_sorted(bool assume_is_sorted) {
  assume_sorted_ = assume_is_sorted;
}

// Lookup an element

template <class T_Element, class T_Alloc>
inline
typename SparseVector<T_Element,T_Alloc>::element_type*
SparseVector<T_Element,T_Alloc>::lookup_element(size_type i)
{
  return const_cast<element_type*>(SparseVectorUtilityPack::lookup_element(index_lookup_,i,assume_sorted_));
}

template <class T_Element, class T_Alloc>
inline
const typename SparseVector<T_Element,T_Alloc>::element_type*
SparseVector<T_Element,T_Alloc>::lookup_element(size_type i) const
{
  return SparseVectorUtilityPack::lookup_element(index_lookup_,i,assume_sorted_);
}

// Creating a slice (subregion) of the sparse vector

template <class T_Element, class T_Alloc>
inline SparseVector<T_Element,T_Alloc>::operator SparseVectorSlice<T_Element>() {
  return get_whole_sp_vec();
}

template <class T_Element, class T_Alloc>
inline SparseVector<T_Element,T_Alloc>::operator const SparseVectorSlice<T_Element>() const {
  return get_whole_sp_vec();
}

template <class T_Element, class T_Alloc>
inline SparseVectorSlice<T_Element> SparseVector<T_Element,T_Alloc>::operator()() {
  return get_whole_sp_vec();
}

template <class T_Element, class T_Alloc>
inline const SparseVectorSlice<T_Element> SparseVector<T_Element,T_Alloc>::operator()() const {
  return get_whole_sp_vec();
}

template <class T_Element, class T_Alloc>
inline SparseVectorSlice<T_Element> SparseVector<T_Element,T_Alloc>::operator()(const Range1D& rng) {
  return get_slice(rng);
}

template <class T_Element, class T_Alloc>
inline const SparseVectorSlice<T_Element> SparseVector<T_Element,T_Alloc>::operator()(const Range1D& rng) const {
  return get_slice(rng);
}

template <class T_Element, class T_Alloc>
inline SparseVectorSlice<T_Element> SparseVector<T_Element,T_Alloc>::operator()(size_type lbound, size_type ubound) {
  return get_slice(Range1D(lbound,ubound));
}

template <class T_Element, class T_Alloc>
inline const SparseVectorSlice<T_Element> SparseVector<T_Element,T_Alloc>::operator()(size_type lbound, size_type ubound) const {
  return get_slice(Range1D(lbound,ubound));
}

// /////////////////////////////////////////////////////////////////////////////////////
// Inline members for SparseVectorSlice<>

// Constuctors

template <class T_Element>
inline SparseVectorSlice<T_Element>::SparseVectorSlice(element_type ele[], size_type nz
    , difference_type offset, size_type size, bool assume_sorted)
  : index_lookup_(ele,nz,offset), size_(size), assume_sorted_(assume_sorted)
{}

template <class T_Element>
inline void SparseVectorSlice<T_Element>::bind(SparseVectorSlice svs)
{
  index_lookup_	= svs.index_lookup_;
  size_			= svs.size_;
  assume_sorted_	= svs.assume_sorted_;
}

// Sparse Vector Templated interface for linear algebra operations

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::size_type SparseVectorSlice<T_Element>::dim() const {
  return size_;
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::size_type SparseVectorSlice<T_Element>::nz() const {
  return index_lookup_.nz();
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::difference_type SparseVectorSlice<T_Element>::offset() const {
  return index_lookup_.offset();
}

template <class T_Element>
inline bool SparseVectorSlice<T_Element>::is_sorted() const {
  return nz() <= 1 || assume_sorted_;
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::iterator SparseVectorSlice<T_Element>::begin() {
  return index_lookup_.ele();
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::const_iterator SparseVectorSlice<T_Element>::begin() const {
  return index_lookup_.ele();
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::iterator SparseVectorSlice<T_Element>::end() {
  return index_lookup_.ele() + index_lookup_.nz();
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::const_iterator SparseVectorSlice<T_Element>::end() const {
  return index_lookup_.ele() +  index_lookup_.nz();
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::reverse_iterator SparseVectorSlice<T_Element>::rbegin() {
  return reverse_iterator(end());
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::const_reverse_iterator SparseVectorSlice<T_Element>::rbegin() const {
  return const_reverse_iterator(end());
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::reverse_iterator SparseVectorSlice<T_Element>::rend() {
  return reverse_iterator(begin());
}

template <class T_Element>
inline typename SparseVectorSlice<T_Element>::const_reverse_iterator SparseVectorSlice<T_Element>::rend() const {
  return const_reverse_iterator(begin());
}

// Lookup an element

template <class T_Element>
inline
typename SparseVectorSlice<T_Element>::element_type*
SparseVectorSlice<T_Element>::lookup_element(size_type i)
{
  return const_cast<element_type*>(SparseVectorUtilityPack::lookup_element(index_lookup_,i,assume_sorted_));
}

template <class T_Element>
inline
const typename SparseVectorSlice<T_Element>::element_type*
SparseVectorSlice<T_Element>::lookup_element(size_type i) const
{
  return SparseVectorUtilityPack::lookup_element(index_lookup_,i,assume_sorted_);
}

// Creating a slice (subregion) of the sparse vector

template <class T_Element>
inline SparseVectorSlice<T_Element>& SparseVectorSlice<T_Element>::operator()() {
  return *this;
}

template <class T_Element>
inline const SparseVectorSlice<T_Element>& SparseVectorSlice<T_Element>::operator()() const {
  return *this;
}

template <class T_Element>
inline SparseVectorSlice<T_Element> SparseVectorSlice<T_Element>::operator()(const Range1D& rng) {
  return get_slice(rng);
}

template <class T_Element>
inline const SparseVectorSlice<T_Element> SparseVectorSlice<T_Element>::operator()(const Range1D& rng) const {
  return get_slice(rng);
}

template <class T_Element>
inline SparseVectorSlice<T_Element> SparseVectorSlice<T_Element>::operator()(size_type lbound, size_type ubound) {
  return get_slice(Range1D(lbound,ubound));
}

template <class T_Element>
inline const SparseVectorSlice<T_Element> SparseVectorSlice<T_Element>::operator()(size_type lbound, size_type ubound) const {
  return get_slice(Range1D(lbound,ubound));
}

} // end namespace AbstractLinAlgPack 

#endif // SPARSE_VECTOR_CLASS_DECL_H