/usr/include/trilinos/AbstractLinAlgPack_MatrixSymAddDelUpdateable.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef MATRIX_SYM_ADD_DEL_UPDATEABLE_H
#define MATRIX_SYM_ADD_DEL_UPDATEABLE_H
#include "AbstractLinAlgPack_Types.hpp"
#include "AbstractLinAlgPack_MatrixBase.hpp"
namespace AbstractLinAlgPack {
/** \brief Mix-in Interface for updating a serial symmetric matrix by adding and deleting
* rows and columns.
*
* This interface is designed to allow objects of this type to be used
* in several different situations. Generally, the matrix being updated
* would be nonsingular but it does not have to be. An important property
* of symmetric matrix is its inertia. The inertia of a matrix is the
* number of negative, zero, and positive eigenvalues respectively.
* While the eigenvalues themselves can be very difficult to compute,
* in many cases the inertia is very easy to determine. For instance,
* if a <tt>A = L*D*L'</tt> factorization is being used, the inertia of the diagonal
* matrix <tt>D</tt> is the same as for <tt>A</tt>. Likewise, if a cholesky factorization
* <tt>A = (+-)C*C'</tt> is used then it is easy to prove if the matrix is positive
* definite (all positive eigen values) or negative definite (all negative
* eigen values). With other factorizations (such as QR for instance)
* it is more difficult to determine the inertia and therefore it may
* not be available.
*
* In inexact floating point arithmetic, it can be difficult to distingish
* if a matrix is singular or nonsingular or if a matrix really has the
* wrong inertia or is just singular. In order to do this, tolerances
* have to be identified. In many contexts it is important for the client
* to be able to specify these tolerances. In order to establish a frame
* of reference that is independent of the actual implementation of the
* factorizations for the subclasses of this interface, we will use the
* LU factorization:
*
* <tt>A = L*U</tt>
*
* where <tt>L</tt> is lower unit triangular and <tt>U</tt>
* is upper nonunit triangular. We will define the quantity:
*
* <tt>gamma = min{|U(i,i)|,i=1..n}/max{|U(i,i)|,i=1..n}</tt>
*
* as a measure of singularity. Of course subclasses may not actually
* use a LU factorization but by establishing this simple frame of
* reference the tolerances can be properly interpreted by the subclasses.
*
* The classification of an factorized matrix will be as follows:
\verbatim
if (correct inertia) and (gamma > warning_tol) then
The matrix is nonsingular and has the correct inertia, the
initialization or update will succeed and all is good :-)
elseif (correct inertia) and (singular_tol < gamma <= warning_tol) then
The matrix will be considered nonsingular and the initialization
or the update will succeed but a WarnNearSingularUpdateException
will be thrown containing gamma and a warning message.
elseif (correct inertia) and (0.0 < gamma <= singular_tol) then
The matrix is considered singular, the initialization or update
will not succeeed and a SingularUpdateException will be thrown
containing gamma and an error message.
elseif (gamma == 0.0) then
The matrix is exactly singular, the initialization or update
will not succeed and a SingularUpdateException will be thrown
containing gamma and an error message.
elseif (incorrect inertia) and (0.0 < gamma < wrong_inertia_tol) then
The matrix will be considered singular, the initialization or update
will not succeed and a SingularUpdateException will be thrown
containing gamma and an error message.
elseif (incorrect inertia) and (gamma >= wrong_inertia_tol) then
The matrix is considered to be nonsingular but to have the wrong inertia,
the initialization or update will not succeed and a WrongInertiaException
will be thrown containing gamma and an error message.
endif
\endverbatim
* The tolerances <tt>warning_tol</tt>, <tt>singular_tol</tt> and <tt>wrong_inertia_tol</tt> are
* passed in as part of the struct <tt>PivotTolerances</tt> to each of the
* methods that need them. The default initialization for these tolerances
* is <tt>PivotTolerances::UNKNOWN</tt> which means that the matrix object can do what
* ever it wants to do. It may use its own tolerances or none at all. In
* other words, the behavior is completely up to the subclass.
* The idea of <tt>warning_tol</tt> and throwing an exception <tt>except</tt> of type
* <tt>WarnNearSingularUpdateException</tt> is to allow the updates to succeed but
* return a warning message and the value of <tt>gamma</tt> as information to
* the user.
*/
class MatrixSymAddDelUpdateable
: public virtual AbstractLinAlgPack::MatrixBase // doxygen needs full name
{
public:
/** @name Public types */
//@{
/** \brief . */
enum EEigenValType { EIGEN_VAL_POS, EIGEN_VAL_NEG, EIGEN_VAL_ZERO, EIGEN_VAL_UNKNOWN };
/** \brief Struct for the inertia of the matrix.
*
* Any or all of the values <tt>neg_eigens</tt>, <tt>zero_eigens</tt> or <tt>pos_eigens</tt>
* may be <tt>UNKNOWN</tt>.
*/
struct Inertia {
enum { UNKNOWN = -1 };
Inertia(
int neg_eigen_vals = UNKNOWN
,int zero_eigen_vals = UNKNOWN
,int pos_eigen_vals = UNKNOWN
)
: neg_eigens(neg_eigen_vals)
,zero_eigens(zero_eigen_vals)
,pos_eigens(pos_eigen_vals)
{}
/** \brief . */
int neg_eigens;
/** \brief . */
int zero_eigens;
/** \brief . */
int pos_eigens;
};
/** \brief Struct for pivot tolerances to be used when initializing, and augmenting
* and deleting rows and columns.
*/
struct PivotTolerances {
enum { UNKNOWN = -1 };
PivotTolerances() // 2001/03/08: g++ 2.95.2 requries separate
:warning_tol(UNKNOWN) // constructor for use in default argument
,singular_tol(UNKNOWN) // or you get internalcomplier error later?
,wrong_inertia_tol(UNKNOWN)
{}
PivotTolerances(
value_type _warning_tol
,value_type _singular_tol
,value_type _wrong_inertia_tol
)
:warning_tol(_warning_tol)
,singular_tol(_singular_tol)
,wrong_inertia_tol(_wrong_inertia_tol)
{}
/** \brief . */
value_type warning_tol;
/** \brief . */
value_type singular_tol;
/** \brief . */
value_type wrong_inertia_tol;
};
/// Thrown if the matrix is near singular as a warning.
class WarnNearSingularUpdateException : public std::logic_error {
public:
WarnNearSingularUpdateException(const std::string& what_arg,value_type _gamma)
: std::logic_error(what_arg), gamma(_gamma) {}
value_type gamma;
};
/// Thrown if the matrix is singular and should not have been.
class SingularUpdateException : public std::logic_error {
public:
SingularUpdateException(const std::string& what_arg,value_type _gamma)
: std::logic_error(what_arg), gamma(_gamma) {}
value_type gamma;
};
/// Thrown if matrix has the wrong inertia from what was expected.
class WrongInertiaUpdateException : public std::logic_error {
public:
WrongInertiaUpdateException(const std::string& what_arg,value_type _gamma)
: std::logic_error(what_arg), gamma(_gamma) {}
value_type gamma;
};
/// Thrown if the maximum size is exceeded in augment_update(...).
class MaxSizeExceededException : public std::logic_error
{public: MaxSizeExceededException(const std::string& what_arg) : std::logic_error(what_arg) {}};
//@}
/** @name Public members to be overridden */
//@{
/** \brief . */
virtual ~MatrixSymAddDelUpdateable()
{}
/** \brief Initialize to a 1x1 matrix.
*
* Since this is a 1x1 matrix the inetia is given by the sign
* of alpha.
*
* @param alpha [in] The single entry in the 1x1 matrix to initialize.
* @param max_size [in] The maximum size for <tt>rows()</tt> and <tt>cols()</tt> the
* maxtix is allowed to become.
*/
virtual void initialize(
value_type alpha
, size_type max_size
) = 0;
/** \brief Initialize given a symmetric matrix.
*
* The behavior of this function will vary based on the subclass that implements it.
* Some subclasses may require that <tt>A</tt> be nonsingular and therefore <tt>inertia.zero_eigens</tt>
* should be zero.
*
* @param A [in] Symetric matrix that <tt>this</tt> is initialized with.
* @param max_size [in] The maximum size <tt>rows()</tt> and <tt>cols()</tt> can become.
* @param force_factorization
* [in] If true, the factorization of the matrix will be forced and
* any possible exceptions will be thrown. If false then the factorization
* may not be forced, in which case the client may not know immediatly
* that the matrix is singular or has the wrong inertia.
* @param inertia [in] The estimated inertia of the matrix. If the user knows any
* of the members of inertia then they should be set. Some subclasses
* may rely on this estimate of the inertia to determine what should be
* done.
* @param pivot_tols
* [in] Tolerances to use to determine singularity, nonsingularity etc.
* See the intro. Default is no tolerances.
*/
virtual void initialize(
const DMatrixSliceSym &A
,size_type max_size
,bool force_factorization
,Inertia inertia
,PivotTolerances pivot_tols = PivotTolerances()
) = 0;
/** \brief Return the maximum size the matrix is allowed to become.
*/
virtual size_type max_size() const = 0;
/** \brief Return the inertia of the matrix (if it is known).
* If any of the members of the inertia is not known then
* they may be set to <tt>Inertia::UNKNOWN</tt>. If the matrix is
* nonsingular then <tt>return.zero_eigens == 0</tt> will be true.
*/
virtual Inertia inertia() const = 0;
/** \brief Set the matrix to uninitialized.
*/
virtual void set_uninitialized() = 0;
/** \brief Update by adding a symmetric row and column.
*
* The update performed is:
\verbatim
[ A t ]
[ t' alpha ] ==> A_new
\endverbatim
* Preconditions:<br>
* \begin{itemize}
* \item <tt>[t != NULL] t->size() == this->rows()</tt> (throw <tt>std::length_error</tt>)
* \item <tt>this->rows() < this->max_size()</tt> (throw <tt>MaxSizeExceededException</tt>)
* \end{itemize}
*
* Postcondiditons:<br>
* The update gives a legal update depending on the
* context of the subclass (nonsigular, positive definite etc.).
* If the subclass requires the matrix to be nonsingular but
* <tt>inertia.zero_eigens == 0</tt> or the matrix is determined to be singular
* then the exception <tt>SingularUpdateException</tt> will be thrown.
* If the matrix is found to not have the propper inertia then the
* exception <tt>WrongInertiaUpdateException</tt> will be thrown. This subclass
* may not be able to determine the inertia in which case this exception
* will never be thrown.
* If no exceptions are thrown then <tt>this->rows()</tt> and <tt>this->cols()</tt>
* will increase by one and <tt>this->inertia()</tt> will return the new inertia
* if it is known.
*
* @param t [in] DVectorSlice (size == <tt>rows()</tt>) where <tt>t</tt> may be <tt>NULL</tt> in which
* case t is considered zero.
* @param alpha [in] Scalar added.
* @param force_refactorization
* [in] If true, then the factorization of the matrix will
* be performed before the function returns. If something
* goes wrong then an exeception will be thrown here.
* @param add_eigen_val
* [in] Gives the estimate of the new eigen value added
* to the matrix. If the matrix does not agree with this
* then an exception will be thrown.
* @param pivot_tols
* [in] Tolerances to use to determine singularity, nonsingularity etc.
* See the intro. Default is no tolerances.
*/
virtual void augment_update(
const DVectorSlice *t
,value_type alpha
,bool force_refactorization = true
,EEigenValType add_eigen_val = EIGEN_VAL_UNKNOWN
,PivotTolerances pivot_tols = PivotTolerances()
) = 0;
/** \brief Update by deleteing a symmetric row and column.
*
\verbatim
jd
[ A11 a12 A13 ]
A = [ a12' a22 a23' ] jd ==> A_new = [ A11 A13 ]
[ A13' a23 A33 ] [ A13' A33 ]
\endverbatim
*
* Preconditions:<br>
* \begin{itemize}
* \item <tt>1 <= jd && jd <= this->rows()</tt> (throw <tt>std::out_of_range</tt>)
* \end{itemize}
*
* Postcondiditons:<br>
* The update give a legal update depending on the
* context of the subclass (nonsigular, positive definite etc.).
* Also <tt>rows()</tt> and <tt>cols()</tt> will decrease by one so this_after<tt>->rows()</tt> == this_before<tt>->rows()</tt> - 1.
*
* @param jd [in] The jth row and column to be removed from the matrix.
* @param force_refactorization
* [in] If true, then the factorization of the matrix will
* be performed before the function returns. If something
* goes wrong then an exeception will be thrown here.
* @param drop_eigen_val
* [in] Gives the estimate of the eigen value dropped
* from the matrix. If the matrix does not agree with this
* then an exception will be thrown.
* @param pivot_tols
* [in] Tolerances to use to determine singularity, nonsingularity etc.
* See the intro. Default is no tolerances.
*/
virtual void delete_update(
size_type jd
,bool force_refactorization = true
,EEigenValType drop_eigen_val = EIGEN_VAL_UNKNOWN
,PivotTolerances pivot_tols = PivotTolerances()
) = 0;
//@}
}; // end class MatrixSymAddDelUpdateable
} // namespace AbstractLinAlgPack
#endif // MATRIX_SYM_ADD_DEL_UPDATEABLE_H
|