/usr/include/trilinos/AbstractLinAlgPack_MatrixOp.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ABSTRACT_LINALG_PACK_MATRIX_WITH_OP_H
#define ABSTRACT_LINALG_PACK_MATRIX_WITH_OP_H
#include <iosfwd>
#include "AbstractLinAlgPack_MatrixBase.hpp"
#include "Teuchos_RCP.hpp"
namespace AbstractLinAlgPack {
/** \brief Base class for all matrices that support basic matrix operations.
*
* These basic operations are:
*
* Level-1 BLAS
*
* <tt>mwo_lhs += alpha * op(M_rhs)</tt> (BLAS xAXPY)<br>
* <tt>mwo_lhs += alpha * op(M_rhs) * op(P_rhs)</tt><br>
* <tt>mwo_lhs += alpha * op(P_rhs) * op(M_rhs)</tt><br>
* <tt>mwo_lhs += alpha * op(P1_rhs) * op(M_rhs) * op(P2_rhs)</tt><br>
*
* <tt>M_lhs += alpha * op(mwo_rhs)</tt> (BLAS xAXPY)<br>
* <tt>M_lhs += alpha * op(mwo_rhs) * op(P_rhs)</tt><br>
* <tt>M_lhs += alpha * op(P_rhs) * op(mwo_rhs)</tt><br>
* <tt>M_lhs += alpha * op(P1_rhs) * op(mwo_rhs) * op(P2_rhs)</tt><br>
*
* Level-2 BLAS
*
* <tt>v_lhs = alpha * op(M_rhs1) * v_rhs2 + beta * v_lhs</tt> (BLAS xGEMV)<br>
* <tt>v_lhs = alpha * op(M_rhs1) * sv_rhs2 + beta * v_lhs</tt> (BLAS xGEMV)<br>
* <tt>v_lhs = alpha * op(P_rhs1) * op(M_rhs2) * v_rhs3 + beta * v_lhs</tt><br>
* <tt>v_lhs = alpha * op(P_rhs1) * op(M_rhs2) * sv_rhs3 + beta * v_lhs</tt><br>
* <tt>result = v_rhs1' * op(M_rhs2) * v_rhs3</tt><br>
* <tt>result = sv_rhs1' * op(M_rhs2) * sv_rhs3</tt><br>
*
* Level-3 BLAS
*
* <tt>mwo_lhs = alpha * op(M_rhs1) * op(mwo_rhs2) + beta * mwo_lhs</tt> (right) (xGEMM)<br>
* <tt>mwo_lhs = alpha * op(mwo_rhs1) * op(M_rhs2) + beta * mwo_lhs</tt> (left) (xGEMM)<br>
* <tt>M_lhs = alpha * op(mwo_rhs1) * op(mwo_rhs2) + beta * M_lhs</tt> (xGEMM)<br>
*
* All of the Level-1, Level-2 and Level-3 BLAS operations have default implementations
* based on the Level-2 BLAS operation:<br>
*
* <tt>v_lhs = alpha * op(M_rhs1) * v_rhs2 + beta * v_lhs</tt> (BLAS xGEMV)<br>
*
* The only methods that have to be overridden are \c space_cols(), \c space_rows()
* and the single \c Vp_StMtV() method shown above. This is to allow fast prototyping of
* matrix subclasses and for postponement of writting specialized methods of other time
* critical operations until later if they are needed.
*
* The vector space objects returned by the methods \c space_cols() and \c space_rows()
* are specifically bound to this matrix object. The vector space objects returned should
* only be considered to be transient and may become invalid if \c this is modified in some
* significant way (but not through this <tt>%MatrixOp</tt> interface obviously).
*
* Most of the Level-1 through Level-3 BLAS methods should not be called directly by clients,
* but instead be called through the \ref MatrixWithOp_func_grp "provided non-member functions".
* The Level-1 and Level-3 matrix methods of this class have a special protocal in order to deal
* with the multiple dispatch problem. In essence, a poor man's multiple dispatch
* is used to allow each of the participating matrix objects a chance to implement
* an operation. In each case, a non-member function must be called by the client
* which calls the virtual methods on the matrix arguments one at a time.
* All of the Level-1 and Level-3 matrix methods are implemented for the case where
* the lhs matrix supports the <tt>MultiVectorMutable</tt> interface. These matrix
* operations are then implemented in terms of <tt>AbstractLinAlgPack::Vp_StMtV(...)</tt>
* which must be implemented for every matrix subclass. Therefore, any combination of
* rhs matrices can always be used in any matrix operation as long as a compatible
* (i.e. vector spaces match up) <tt>MultiVectorMutable</tt> object is used as the
* lhs matrix argument.
*
* Note, this behavior is only implemented by the *nonmember* functions
* <tt>AbstractLinAlgPack::Mp_StM(...)</tt> or <tt>AbstractLinAlgPack::Mp_StMtM(...)</tt>.
* All of the default virtual implementations of <tt>Mp_StM(...)</tt> and
* <tt>Mp_StMtM(...)</tt> return false.
*
* This form of multiple dispatach is not ideal in the sense that the first matrix
* argument that *can* implement the method will do so instead of perhaps the *best*
* implementation that could be provided by another matrix argument. Therefore,
* a matrix subclass should only override one of these matrix methods if it can
* provide a significantly better implementation than the default. If a client
* needs exact control of the implementation of a matrix operation, then they
* should consider using a ``Strategy'' object.
*
* ToDo: Add more detailed documentation for the default Level-1 and Level-3 BLAS
* methods.
*/
class MatrixOp : public virtual MatrixBase {
public:
/** @name Friends */
//@{
/** \brief . */
friend
void Mt_S( MatrixOp* mwo_lhs, value_type alpha );
/** \brief . */
friend
void Mp_StM(
MatrixOp* mwo_lhs, value_type alpha, const MatrixOp& M_rhs
, BLAS_Cpp::Transp trans_rhs);
/** \brief . */
friend
void Mp_StMtP(
MatrixOp* mwo_lhs, value_type alpha
,const MatrixOp& M_rhs, BLAS_Cpp::Transp M_trans
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
);
/** \brief . */
friend
void Mp_StPtM(
MatrixOp* mwo_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
,const MatrixOp& M_rhs, BLAS_Cpp::Transp M_trans
);
/** \brief . */
friend
void Mp_StPtMtP(
MatrixOp* mwo_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& M_rhs, BLAS_Cpp::Transp trans_rhs
,const GenPermMatrixSlice& P_rhs2, BLAS_Cpp::Transp P_rhs2_trans
);
/** \brief . */
friend
void Vp_StMtV(
VectorMutable* v_lhs, value_type alpha, const MatrixOp& M_rhs1
,BLAS_Cpp::Transp trans_rhs1, const Vector& v_rhs2, value_type beta
);
/** \brief . */
friend
void Vp_StMtV(
VectorMutable* v_lhs, value_type alpha, const MatrixOp& M_rhs1
,BLAS_Cpp::Transp trans_rhs1, const SpVectorSlice& sv_rhs2, value_type beta
);
/** \brief . */
friend
void Vp_StPtMtV(
VectorMutable* v_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& M_rhs2, BLAS_Cpp::Transp M_rhs2_trans
,const Vector& v_rhs3, value_type beta
);
/** \brief . */
friend
void Vp_StPtMtV(
VectorMutable* v_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& M_rhs2, BLAS_Cpp::Transp M_rhs2_trans
,const SpVectorSlice& sv_rhs3, value_type beta
);
/** \brief . */
friend
value_type transVtMtV(
const Vector& v_rhs1, const MatrixOp& M_rhs2
,BLAS_Cpp::Transp trans_rhs2, const Vector& v_rhs3
);
/** \brief . */
friend
value_type transVtMtV(
const SpVectorSlice& sv_rhs1, const MatrixOp& M_rhs2
,BLAS_Cpp::Transp trans_rhs2, const SpVectorSlice& sv_rhs3
);
/** \brief . */
friend
void syr2k(
const MatrixOp& M, BLAS_Cpp::Transp M_trans, value_type alpha
,const GenPermMatrixSlice& P1, BLAS_Cpp::Transp P1_trans
,const GenPermMatrixSlice& P2, BLAS_Cpp::Transp P2_trans
,value_type beta, MatrixSymOp* symwo_lhs
);
/** \brief . */
friend
void Mp_StMtM(
MatrixOp* mwo_lhs, value_type alpha
,const MatrixOp& mwo_rhs1, BLAS_Cpp::Transp trans_rhs1
,const MatrixOp& mwo_rhs2, BLAS_Cpp::Transp trans_rhs2
,value_type beta
);
/** \brief . */
friend
void syrk(
const MatrixOp &mwo_rhs
,BLAS_Cpp::Transp M_trans
,value_type alpha
,value_type beta
,MatrixSymOp *sym_lhs
);
//@}
/** @name Public types */
//@{
#ifndef DOXYGEN_COMPILE
/** \brief . */
typedef Teuchos::RCP<const MatrixOp> mat_ptr_t;
/** \brief . */
typedef Teuchos::RCP<MatrixOp> mat_mut_ptr_t;
#endif
/// Type of matrix norm
enum EMatNormType {
MAT_NORM_INF ///< The induced infinity norm ||M||inf, i.e. max abs row sum
,MAT_NORM_2 ///< The induced two (i.e. Euclidean norm) norm ||M||2
,MAT_NORM_1 ///< The induced one norm ||M||1, i.e. max abs col sum
,MAT_NORM_FORB ///< The Forbenious norm, i.e. max abs element
};
/// Returned form <tt>calc_norm()</tt>.
struct MatNorm {
MatNorm(value_type _value, EMatNormType _type) : value(_value), type(_type) {}
value_type value;
EMatNormType type;
};
/// Thrown if a method is not implemented
class MethodNotImplemented : public std::runtime_error
{public: MethodNotImplemented(const std::string& what_arg) : std::runtime_error(what_arg) {}};
/// Thrown if matrices are not compatible
class IncompatibleMatrices : public std::logic_error
{public: IncompatibleMatrices(const std::string& what_arg) : std::logic_error(what_arg) {}};
//@}
/** @name Minimal modifying methods */
//@{
/** \brief M_lhs = 0 : Zero out the matrix.
*
* The default implementation throws an exception. This is not
* the best design but it meets some needs. Any matrix implementation
* could implement this method and mimic the behavior (i.e. see the
* matrix subclass <tt>MatrixZero</tt>). However, only matrices that are
* going to be on the lhs (non-const) of a Level-1 or Level-3 BLAS
* operation need every implement this method.
*/
virtual void zero_out();
/** \brief M_lhs *= alpha : Multiply a matrix by a scalar.
*
* The default implementation throws an exception. This is not
* the best design but it meets some needs. Any matrix implementation
* could implement this method and mimic the behavior (i.e.
* simply implement the matrix \c M as (<tt>alpha * M</tt>).
* This method is only called in a few specialized situations.
*/
virtual void Mt_S( value_type alpha );
/** \brief M_lhs = mwo_rhs : Virtual assignment operator.
*
* The default implementation just throws a std::logic_error
* exception if it is not assignment to self. A more specialized
* implementation could use this to copy the state to <tt>this</tt> matrix
* object from a compatible <tt>M</tt> matrix object.
*/
virtual MatrixOp& operator=(const MatrixOp& mwo_rhs);
//@}
/** @name Clone */
//@{
/** \brief Clone the non-const matrix object (if supported).
*
* The primary purpose for this method is to allow a client to capture the
* current state of a matrix object and be guaranteed that some other client
* will not alter its behavior. A smart implementation will use reference
* counting and lazy evaluation internally and will not actually copy any
* large amount of data unless it has to.
*
* The default implementation returns NULL which is perfectly acceptable.
* A matrix object is not required to return a non-NULL value but almost
* every good matrix implementation will.
*/
virtual mat_mut_ptr_t clone();
/** \brief Clone the const matrix object (if supported).
*
* The behavior of this method is the same as for the non-const version
* above except it returns a smart pointer to a const matrix object.
*/
virtual mat_ptr_t clone() const;
//@}
/** @name Output */
//@{
/** \brief Virtual output function.
*
* The default implementaion just extracts rows one at
* a time by calling <tt>this->Vp_StMtV()</tt> with
* <tt>EtaVector</tt> objects and then prints the rows.
*/
virtual std::ostream& output(std::ostream& out) const;
//@}
/** @name Norms */
//@{
/** \brief Compute a norm of this matrix.
*
* @param requested_norm_type
* [in] Determines the requested type of norm to be computed.
* @param allow_replacement
* [in] Determines if the requested norm in specified in <tt>norm_type</tt>
* can be replaced with another norm that can be computed by the matrix.
*
* @return If a norm is computed, then <tt>return.value</tt> gives the value of the norm
* of type <tt>return.type</tt>.
*
* Postconditions:<ul>
* <li> If <tt>allow_replacement==true</tt>, the matrix object must return a computted norm
* who's type is given in <tt>return.type</tt>.
* <li> If <tt>allow_replacement==false</tt> and the underlying matrix object can not compute
* the norm requested in <tt>norm_type</tt>, then a <tt>MethodNotImplemented</tt> exception
* will be thrown. If the matrix object can compute this norm, then <tt>return.type</tt>
* will be equal to <tt>requested_norm_type</tt>.
* </ul>
*
* The default implementation of this method uses Algorithm 2.5 in "Applied Numerical Linear Algebra"
* by James Demmel (1997) to estimate ||M||1 or ||M||inf. The algorithm uses some of the refinements in the
* referenced algorithm by Highman. This algorithm only requires mat-vecs and transposed
* mat-vecs so every matrix object can implement this method. The main purpose of this default
* implementation is to allow a default implementation of the estimation of the <tt>||.||1</tt>
* or <tt>||.||inf</tt> normed condition number in the class <tt>MatrixOpNonsing</tt>.
* The default arguments for this function will compute a norm and will not thrown an
* exception. The default implementation will throw an exception for any other norm type than
* <tt>requested_norm_type == MAT_NORM_1</tt> or <tt>requested_norm_type = MAT_NORM_INF</tt>.
*/
const MatNorm calc_norm(
EMatNormType requested_norm_type = MAT_NORM_1
,bool allow_replacement = false
) const;
//@}
/** @name Sub-matrix views */
//@{
/** \brief Create a transient constant sub-matrix view of this matrix (if supported).
*
* This view is to be used immediatly and then discarded.
*
* This method can only be expected to return <tt>return.get() != NULL</tt> if
* <tt>this->space_cols().sub_space(row_rng) != NULL</tt> and
* <tt>this->space_rows().sub_space(col_rng) != NULL</tt>.
*
* It is allows for a matrix implementation to return <tt>return.get() == NULL</tt>
* for any arbitrary subview.
*
* The default implementation uses the matrix subclass \c MatrixOpSubView
* and therefore, can return any arbitrary subview. More specialized implementations
* may want to restrict the subview that can be created somewhat.
*/
virtual mat_ptr_t sub_view(const Range1D& row_rng, const Range1D& col_rng) const;
/** \brief Inlined implementation calls <tt>this->sub_view(Range1D(rl,ru),Range1D(cl,cu))</tt>.
*/
mat_ptr_t sub_view(
const index_type& rl, const index_type& ru
,const index_type& cl, const index_type& cu
) const;
//@}
/** @name Permuted views */
//@{
/** \brief Create a permuted view: <tt>M_perm = P_row' * M * P_col</tt>.
*
* @param P_row [in] Row permutation. If <tt>P_row == NULL</tt> then the
* indentity permutation is used.
* @param row_part
* [in] Array (length <tt>num_row_part+1</tt>) storing the row indexes
* that may be passed to <tt>return->sub_view(r1,r2,...)</tt>. If
* <tt>row_part == NULL</tt> then the assumed array is <tt>{ 1, this->rows() }</tt>.
* @param num_row_part
* [in] Length of the array \c row_part. If <tt>row_part == NULL</tt> then this
* argument is ignored.
* @param P_col [in] Column permutation. If <tt>P_col == NULL</tt> then the
* indentity permutation is used.
* @param col_part
* [in] Array (length <tt>num_col_part+1</tt>) storing the column indexes
* that may be passed to <tt>return->sub_view(...,c1,c2)</tt>. If
* <tt>col_part == NULL</tt> then the assumed array is <tt>{ 1, this->cols() }</tt>.
* @param num_col_part
* [in] Length of the array \c col_part. If <tt>col_part == NULL</tt> then this
* argument is ignored.
*
* Preconditions:<ul>
* <li> [<tt>P_row != NULL</tt>] <tt>P_row->space().is_compatible(this->space_cols())</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> [<tt>P_col != NULL</tt>] <tt>P_col->space().is_compatible(this->space_rows())</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> [<tt>row_part != NULL</tt>] <tt>1 <= row_part[i-1] < row_part[i] <= this->rows(), for i = 1...num_row_part</tt>
* (throw ???)
* <li> [<tt>col_part != NULL</tt>] <tt>1 <= col_part[i-1] < col_part[i] <= this->cols(), for i = 1...num_col_part</tt>
* (throw ???)
* </ul>
*
* Postconditions:<ul>
* <li> The subviews <tt>return->sub_view(R,C)</tt> should be able to be created efficiently where
* <tt>R = [row_part[kr-1],row_part[kr]-1], for kr = 1...num_row_part</tt> and
* <tt>C = [col_part[kc-1],col_part[kc]-1], for kc = 1...num_col_part</tt>.
* </ul>
*
* The default implementation returns a <tt>MatrixPermAggr</tt> object.
*/
virtual mat_ptr_t perm_view(
const Permutation *P_row
,const index_type row_part[]
,int num_row_part
,const Permutation *P_col
,const index_type col_part[]
,int num_col_part
) const;
/** \brief Reinitialize a permuted view: <tt>M_perm = P_row' * M * P_col</tt>.
*
* @param P_row [in] Same as input to \c perm_view().
* @param row_part
* [in] Same as input to \c perm_view().
* @param num_row_part
* [in] Same as input to \c perm_view().
* @param P_col [in] Same as input to \c perm_view().
* @param col_part
* [in] Same as input to \c perm_view().
* @param num_col_part
* [in] Same as input to \c perm_view().
* @param perm_view
* [in] Smart pointer to a permuted view
* returned from <tt>this->perm_view()</tt>.
*
* Preconditions:<ul>
* <li> [<tt>P_row != NULL</tt>] <tt>P_row->space().is_compatible(this->space_cols())</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> [<tt>P_col != NULL</tt>] <tt>P_col->space().is_compatible(this->space_rows())</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> [<tt>row_part != NULL</tt>] <tt>1 <= row_part[i-1] < row_part[i] <= this->rows(), for i = 1...num_row_part</tt>
* (throw ???)
* <li> [<tt>col_part != NULL</tt>] <tt>1 <= col_part[i-1] < col_part[i] <= this->cols(), for i = 1...num_col_part</tt>
* (throw ???)
* </ul>
*
* The default implementation simply returns <tt>this->perm_view()</tt>
*/
virtual mat_ptr_t perm_view_update(
const Permutation *P_row
,const index_type row_part[]
,int num_row_part
,const Permutation *P_col
,const index_type col_part[]
,int num_col_part
,const mat_ptr_t &perm_view
) const;
//@}
#ifdef TEMPLATE_FRIENDS_NOT_SUPPORTED
public:
#else
protected:
#endif
/** @name Level-1 BLAS */
//@{
/** \brief mwo_lhs += alpha * op(M_rhs) (BLAS xAXPY).
*
* The default implementation does nothing returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StM()</tt>.
*/
virtual bool Mp_StM(
MatrixOp* mwo_lhs, value_type alpha
,BLAS_Cpp::Transp trans_rhs
) const;
/** \brief M_lhs += alpha * op(mwo_rhs) (BLAS xAXPY).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StM()</tt>.
*/
virtual bool Mp_StM(
value_type alpha,const MatrixOp& M_rhs, BLAS_Cpp::Transp trans_rhs
);
/** \brief mwo_lhs += alpha * op(M_rhs) * op(P_rhs).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StMtP()</tt>.
*/
virtual bool Mp_StMtP(
MatrixOp* mwo_lhs, value_type alpha
,BLAS_Cpp::Transp M_trans
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
) const;
/** \brief M_lhs += alpha * op(mwo_rhs) * op(P_rhs).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StMtP()</tt>.
*/
virtual bool Mp_StMtP(
value_type alpha
,const MatrixOp& mwo_rhs, BLAS_Cpp::Transp M_trans
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
);
/** \brief mwo_lhs += alpha * op(P_rhs) * op(M_rhs).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StPtM()</tt>.
*/
virtual bool Mp_StPtM(
MatrixOp* mwo_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
,BLAS_Cpp::Transp M_trans
) const;
/** \brief M_lhs += alpha * op(P_rhs) * op(mwo_rhs).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StPtM()</tt>.
*/
virtual bool Mp_StPtM(
value_type alpha
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
,const MatrixOp& mwo_rhs, BLAS_Cpp::Transp M_trans
);
/** \brief mwo_lhs += alpha * op(P_rhs1) * op(M_rhs) * op(P_rhs2).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StPtMtP()</tt>.
*/
virtual bool Mp_StPtMtP(
MatrixOp* mwo_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,BLAS_Cpp::Transp M_trans
,const GenPermMatrixSlice& P_rhs2, BLAS_Cpp::Transp P_rhs2_trans
) const;
/** \brief M_lhs += alpha * op(P_rhs1) * op(mwo_rhs) * op(P_rhs2).
*
* The default implementation does nothing and returns false.
*
* A client can not call this method call this method directly.
* Instead, use <tt>AbstractLinAlgPack::Mp_StPtMtP()</tt>.
*/
virtual bool Mp_StPtMtP(
value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& mwo_rhs, BLAS_Cpp::Transp M_trans
,const GenPermMatrixSlice& P_rhs2, BLAS_Cpp::Transp P_rhs2_trans
);
// end Level-1 BLAS
//@}
/** @name Level-2 BLAS */
//@{
/// v_lhs = alpha * op(M_rhs1) * v_rhs2 + beta * v_lhs (BLAS xGEMV)
virtual void Vp_StMtV(
VectorMutable* v_lhs, value_type alpha, BLAS_Cpp::Transp trans_rhs1
,const Vector& v_rhs2, value_type beta
) const = 0;
/// v_lhs = alpha * op(M_rhs1) * sv_rhs2 + beta * v_lhs (BLAS xGEMV)
virtual void Vp_StMtV(
VectorMutable* v_lhs, value_type alpha, BLAS_Cpp::Transp trans_rhs1
,const SpVectorSlice& sv_rhs2, value_type beta
) const;
/// v_lhs = alpha * op(P_rhs1) * op(M_rhs2) * v_rhs3 + beta * v_rhs
virtual void Vp_StPtMtV(
VectorMutable* v_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,BLAS_Cpp::Transp M_rhs2_trans
,const Vector& v_rhs3, value_type beta
) const;
/// v_lhs = alpha * op(P_rhs1) * op(M_rhs2) * sv_rhs3 + beta * v_rhs
virtual void Vp_StPtMtV(
VectorMutable* v_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,BLAS_Cpp::Transp M_rhs2_trans
,const SpVectorSlice& sv_rhs3, value_type beta
) const;
/// result = v_rhs1' * op(M_rhs2) * v_rhs3
virtual value_type transVtMtV(
const Vector& v_rhs1, BLAS_Cpp::Transp trans_rhs2
,const Vector& v_rhs3
) const;
/// result = sv_rhs1' * op(M_rhs2) * sv_rhs3
virtual value_type transVtMtV(
const SpVectorSlice& sv_rhs1, BLAS_Cpp::Transp trans_rhs2
,const SpVectorSlice& sv_rhs3
) const;
/** \brief Perform a specialized rank-2k update of a dense symmetric matrix of the form:
*
* <tt>symwo_lhs += alpha*op(P1')*op(M)*op(P2) + alpha*op(P2')*op(M')*op(P1) + beta*symwo_lhs</tt>
*
* The reason that this operation is being classified as a level-2 operation is that the
* total flops should be of <tt>O(n^2)</tt> and not <tt>O(n^2*k)</tt>.
*
* The default implementation is based on <tt>Mp_StMtP(...)</tt> and <tt>Mp_StPtM(...)</tt>.
* Of course in situations where this default implemention is inefficient the subclass should
* override this method.
*/
virtual void syr2k(
BLAS_Cpp::Transp M_trans, value_type alpha
,const GenPermMatrixSlice& P1, BLAS_Cpp::Transp P1_trans
,const GenPermMatrixSlice& P2, BLAS_Cpp::Transp P2_trans
,value_type beta, MatrixSymOp* symwo_lhs
) const;
//@}
/** @name Level-3 BLAS */
//@{
/** \brief mwo_lhs = alpha * op(M_rhs1) * op(mwo_rhs2) + beta * mwo_lhs (left) (xGEMM).
*
* The default implementation does nothing and returns false.
*
* Warning! A client should never call this method
* call this method directly. Instead, use
* <tt>AbstractLinAlgPack::Mp_StMtM()</tt>.
*/
virtual bool Mp_StMtM(
MatrixOp* mwo_lhs, value_type alpha
,BLAS_Cpp::Transp trans_rhs1
,const MatrixOp& mwo_rhs2, BLAS_Cpp::Transp trans_rhs2
,value_type beta
) const;
/** \brief mwo_lhs = alpha * op(mwo_rhs1) * op(M_rhs2) + beta * mwo_lhs (right) (xGEMM)
*
* The default implementation does nothing and returns false.
*
* Warning! A client should never call this method
* call this method directly. Instead, use
* <tt>AbstractLinAlgPack::Mp_StMtM()</tt>.
*/
virtual bool Mp_StMtM(
MatrixOp* mwo_lhs, value_type alpha
,const MatrixOp& mwo_rhs1, BLAS_Cpp::Transp trans_rhs1
,BLAS_Cpp::Transp trans_rhs2
,value_type beta
) const;
/** \brief M_lhs = alpha * op(mwo_rhs1) * op(mwo_rhs2) + beta * mwo_lhs (left) (xGEMM)
*
* The default implementation does nothing and returns false.
*
* Warning! A client should never call this method
* call this method directly. Instead, use
* <tt>AbstractLinAlgPack::Mp_StMtM()</tt>.
*/
virtual bool Mp_StMtM(
value_type alpha
,const MatrixOp& mwo_rhs1, BLAS_Cpp::Transp trans_rhs1
,const MatrixOp& mwo_rhs2,BLAS_Cpp::Transp trans_rhs2
,value_type beta
);
/** \brief Perform a rank-k update of a symmetric matrix of the form:
*
* <tt>symwo_lhs += alpha*op(M)*op(M') + beta*symwo_lhs</tt>
*
* where <tt>this</tt> is the rhs matrix argument.
*
* Never call this method directly. Instead use the nonmember function
* <tt>AbstractLinAlgPack::syrk()</tt>.
*
* The default implementation returns <tt>false</tt> and does nothing.
*/
virtual bool syrk(
BLAS_Cpp::Transp M_trans
,value_type alpha
,value_type beta
,MatrixSymOp *sym_lhs
) const;
/** \brief Perform a rank-k update of a symmetric matrix of the form:
*
* <tt>M += alpha*op(mwo_rhs)*op(mwo_rhs') + beta*M</tt>
*
* where <tt>this</tt> is the lhs matrix argument.
*
* Never call this method directly. Instead use the nonmember function
* <tt>AbstractLinAlgPack::syrk()</tt>.
*
* The default implementation returns <tt>false</tt> and does nothing.
*/
virtual bool syrk(
const MatrixOp &mwo_rhs
,BLAS_Cpp::Transp M_trans
,value_type alpha
,value_type beta
);
// end Level-3 BLAS
//@}
}; // end class MatrixOp
// ////////////////////////////////////////////////////////////////////////////////////////////////
/** \defgroup MatrixWithOp_func_grp MatrixOp non-member functions that call virtual functions.
*
* These allow nonmember functions to act like virtual functions. If any of these methods
* on the subclasses are not implemented for a particular set of matrix arguments, then the
* exception <tt>AbstractLinAlgPack::MatrixOp::MethodNotImplemented</tt> is thrown.
* This will not happen as long as a compatible (vector spaces are compatible) lhs matrix
* argument is passed in and <tt>dynamic_cast<MultiVectorMatrix*>(lhs) != NULL</tt>.
*/
//@{
/** @name Level-1 BLAS */
//@{
//
/** mwo_lhs *= alpha.
*
* If <tt>alpha == 0.0</tt> then <tt>mwo_lhs->zero_out()</tt> will be called,
* otherwise <tt>mwo_lhs->Mt_S(alpha)</tt> will be called. If <tt>alpha == 1.0</tt>
* then nothing is done.
*/
void Mt_S( MatrixOp* mwo_lhs, value_type alpha );
//
/** mwo_lhs += alpha * op(M_rhs) (BLAS xAXPY).
*
* Entry point for (poor man's) multiple dispatch.
*
* This method first calls <tt>M_rhs->Mp_StM(mwo_lhs,alpha,trans_rhs)</tt>
* to give the rhs argument a chance to implement the operation. If
* <tt>M_rhs->Mp_StM(...)</tt> returns false, then
* <tt>mwo_lhs->Mp_StM(alpha,*this,trans_rhs)</tt>
* is called to give the lhs matrix argument a chance to implement the method.
* If <tt>mwo_lhs->Mp_StM(...)</tt> returns false, then
* an attempt to perform a dynamic cast the lhs matrix argument to
* <tt>MultiVectorMutable</tt> is attempted. If this cast failes,
* then an exception is thrown.
*/
void Mp_StM(
MatrixOp* mwo_lhs, value_type alpha, const MatrixOp& M_rhs
, BLAS_Cpp::Transp trans_rhs);
/** \brief mwo_lhs += alpha * op(M_rhs) * op(P_rhs).
*
* Entry point for (poor man's) multiple dispatch.
*
* ToDo: Finish documentation!
*/
void Mp_StMtP(
MatrixOp* mwo_lhs, value_type alpha
,const MatrixOp& M_rhs, BLAS_Cpp::Transp M_trans
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
);
/** \brief mwo_lhs += alpha * op(P) * op(M_rhs).
*
* Entry point for (poor man's) multiple dispatch.
*
* ToDo: Finish documentation!
*/
void Mp_StPtM(
MatrixOp* mwo_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs, BLAS_Cpp::Transp P_rhs_trans
,const MatrixOp& M_rhs, BLAS_Cpp::Transp M_trans
);
/** \brief mwo_lhs += alpha * op(P_rhs1) * op(M_rhs) * op(P_rhs2).
*
* Entry point for (poor man's) multiple dispatch.
*
* ToDo: Finish documentation!
*/
void Mp_StPtMtP(
MatrixOp* mwo_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& M_rhs, BLAS_Cpp::Transp trans_rhs
,const GenPermMatrixSlice& P_rhs2, BLAS_Cpp::Transp P_rhs2_trans
);
// end Level-1 BLAS
//@}
/** @name Level-2 BLAS */
//@{
/// v_lhs = alpha * op(M_rhs1) * v_rhs2 + beta * v_lhs (BLAS xGEMV)
inline void Vp_StMtV(
VectorMutable* v_lhs, value_type alpha, const MatrixOp& M_rhs1
,BLAS_Cpp::Transp trans_rhs1, const Vector& v_rhs2, value_type beta = 1.0
)
{
M_rhs1.Vp_StMtV(v_lhs,alpha,trans_rhs1,v_rhs2,beta);
}
/// v_lhs = alpha * op(M_rhs1) * sv_rhs2 + beta * v_lhs (BLAS xGEMV)
inline void Vp_StMtV(
VectorMutable* v_lhs, value_type alpha, const MatrixOp& M_rhs1
,BLAS_Cpp::Transp trans_rhs1, const SpVectorSlice& sv_rhs2, value_type beta = 1.0
)
{
M_rhs1.Vp_StMtV(v_lhs,alpha,trans_rhs1,sv_rhs2,beta);
}
/// v_lhs = alpha * op(P_rhs1) * op(M_rhs2) * v_rhs3 + beta * v_rhs
inline void Vp_StPtMtV(
VectorMutable* v_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& M_rhs2, BLAS_Cpp::Transp M_rhs2_trans
,const Vector& v_rhs3, value_type beta = 1.0
)
{
M_rhs2.Vp_StPtMtV(v_lhs,alpha,P_rhs1,P_rhs1_trans,M_rhs2_trans,v_rhs3,beta);
}
/// v_lhs = alpha * op(P_rhs1) * op(M_rhs2) * sv_rhs3 + beta * v_rhs
inline void Vp_StPtMtV(
VectorMutable* v_lhs, value_type alpha
,const GenPermMatrixSlice& P_rhs1, BLAS_Cpp::Transp P_rhs1_trans
,const MatrixOp& M_rhs2, BLAS_Cpp::Transp M_rhs2_trans
,const SpVectorSlice& sv_rhs3, value_type beta = 1.0
)
{
M_rhs2.Vp_StPtMtV(v_lhs,alpha,P_rhs1,P_rhs1_trans,M_rhs2_trans,sv_rhs3,beta);
}
/// result = v_rhs1' * op(M_rhs2) * v_rhs3
inline value_type transVtMtV(
const Vector& v_rhs1, const MatrixOp& M_rhs2
,BLAS_Cpp::Transp trans_rhs2, const Vector& v_rhs3
)
{
return M_rhs2.transVtMtV(v_rhs1,trans_rhs2,v_rhs3);
}
/// result = sv_rhs1' * op(M_rhs2) * sv_rhs3
inline value_type transVtMtV(
const SpVectorSlice& sv_rhs1, const MatrixOp& M_rhs2
,BLAS_Cpp::Transp trans_rhs2, const SpVectorSlice& sv_rhs3
)
{
return M_rhs2.transVtMtV(sv_rhs1,trans_rhs2,sv_rhs3);
}
/// <tt>symwo_lhs += alpha*op(P1')*op(M)*op(P2) + alpha*op(P2')*op(M')*op(P1) + beta*symwo_lhs</tt>
inline void syr2k(
const MatrixOp& M, BLAS_Cpp::Transp M_trans, value_type alpha
,const GenPermMatrixSlice& P1, BLAS_Cpp::Transp P1_trans
,const GenPermMatrixSlice& P2, BLAS_Cpp::Transp P2_trans
,value_type beta, MatrixSymOp* symwo_lhs
)
{
M.syr2k(M_trans,alpha,P1,P1_trans,P2,P2_trans,beta,symwo_lhs);
}
// end Level-2 BLAS
//@}
/** @name Level-3 BLAS */
//@{
/** \brief mwo_lhs = alpha * op(mwo_rhs1) * op(mwo_rhs2) + beta * mwo_lhs (right) (xGEMM).
*
* This method first calls <tt>mwo_rhs1.Mp_StMtM(...)</tt> to perform the opeation.
* If <tt>mwo_rhs1.Mp_StMtM(...)</tt> returns false, then <tt>mwo_rhs2.Mp_StMtM(...)</tt>
* is called. If <tt>mwo_rhs2.Mp_StMtM(...)</tt> returns false, then
* <tt>mwo_lhs.Mp_StMtM(...)</tt> is called.
*
* As a last resort, the function
* attempts to cast <tt>dynamic_cast<MultiVectorMutable*>(mwo_lhs)</tt>.
* If this dynamic cast fails, the this function throws an exception.
* Otherwise, the operation is implemented in terms of <tt>Vp_StMtV()</tt>.
*/
void Mp_StMtM(
MatrixOp* mwo_lhs, value_type alpha
,const MatrixOp& mwo_rhs1, BLAS_Cpp::Transp trans_rhs1
,const MatrixOp& mwo_rhs2, BLAS_Cpp::Transp trans_rhs2
,value_type beta = 1.0
);
/** \brief Perform a rank-k update of a symmetric matrix of the form:
*
* <tt>symwo_lhs += alpha*op(mwo_rhs)*op(mwo_rhs') + beta*symwo_lhs</tt>
*
* The default implementation returns <tt>false</tt> and does nothing.
*/
void syrk(
const MatrixOp &mwo_rhs
,BLAS_Cpp::Transp M_trans
,value_type alpha
,value_type beta
,MatrixSymOp *sym_lhs
);
// end Level-3 BLAS
//@}
// end non-member functions
//@}
// //////////////////////////////////////////////////
// Inlined methods for MatrixOp
inline
MatrixOp::mat_ptr_t
MatrixOp::sub_view(
const index_type& rl, const index_type& ru
,const index_type& cl, const index_type& cu
) const
{
return this->sub_view(Range1D(rl,ru),Range1D(cl,cu));
}
} // end namespace AbstractLinAlgPack
#endif // ABSTRACT_LINALG_PACK_MATRIX_WITH_OP_H
|