This file is indexed.

/usr/include/trilinos/AbstractLinAlgPack_GenPermMatrixSliceOp.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef GEN_PERM_MATRIX_SLICE_OP_H
#define GEN_PERM_MATRIX_SLICE_OP_H

#include "AbstractLinAlgPack_Types.hpp"
#include "AbstractLinAlgPack_GenPermMatrixSlice.hpp"

namespace AbstractLinAlgPack {

/** @name Operations for GenPermMatrixSlice.
 *
 * ToDo: Finish documentation!
 */
//@{

/** \brief <tt>sv_lhs = alpha * op(P_rhs1) * vs_rhs2</tt>.
 * 
 * This function will resize the sparse vector lhs and only the
 * resultant nonzero elements will be added.
 * 
 * If <tt>op(P_rhs1) is sorted by row (i.e. <tt>op(P_rhs1) = P_rhs1</tt> sorted by row
 * or <tt>op(P_rhs1) = P_rhs1'</tt> sorted by column) then <tt>sv_lhs->assume_sorted(true)</tt>
 * is called and <tt>sv_lhs->is_sorted()==true</tt> on output.
 * 
 * This function will execute in <tt>O(P_rhs1.nz())</tt> time.
 */ 
void V_StMtV(
  SpVector* sv_lhs, value_type alpha, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const DVectorSlice& vs_rhs2
  );

inline
/// <tt>sv_lhs = op(P_rhs1) * vs_rhs2</tt>
void V_MtV(
  SpVector* sv_lhs, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const DVectorSlice& vs_rhs2
  )
{
  V_StMtV(sv_lhs,1.0,P_rhs1,P_rhs1_trans,vs_rhs2);
}

/** \brief <tt>sv_lhs = alpha * op(P_rhs1) * sv_rhs2</tt>.
 * 
 * This function will resize the sparse vector lhs and add only the
 * nonzero elements in the rhs.
 * 
 * If <tt>op(P_rhs1)</tt> is sorted by row (i.e. <tt>op(P_rhs1) = P_rhs1</tt> sorted by row
 * or <tt>op(P_rhs1) = P_rhs1'</tt> sorted by column) then <tt>sv_lhs->assume_sorted(true)</tt>
 * is called.
 * 
 * Let's assume that <tt>op(P_rhs1)</tt> is not sorted by column and <tt>sv_rhs2</tt> is
 * sorted.  In this case a linear search will have to be performed to match up
 * elements.  <tt>P_rhs1</tt> will be iterated through sequentially and
 * the corresponding nonzero element in <tt>sv_rhs2</tt> searched for (binary search).
 * Therefore, the runtime in this case will be:
 \verbatim

    O( P_rhs1.nz() * log(sv_rhs2.nz()) )
 \endverbatim
 * If <tt>P_rhs1</tt> and <tt>sv_rhs2</tt> are unsorted, then the runtime will be:
 \verbatim
 
    O( P_rhs1.nz() * sv_rhs2.nz() )
 \endverbatim
 * If <tt>op(P_rhs1)</tt> is sorted by column and <tt>sv_rhs2</tt> is also 
 * sorted then the runtime will be:
 \verbatim

    O( max( P_rhs1.nz(), sv_rhs2.nz() ) )
 \endverbatim 
 * Of course if <tt>op(P_rhs1)</tt> is not sorted by row then the output vector will
 * not be assumed sorted.
 */ 
void V_StMtV(
  SpVector* sv_lhs, value_type alpha, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const SpVectorSlice& sv_rhs2
  );

inline
/// sv_lhs = op(P_rhs1) * sv_rhs2
void V_MtV(
  SpVector* sv_lhs, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const SpVectorSlice& sv_rhs2
  )
{
  V_StMtV(sv_lhs,1.0,P_rhs1,P_rhs1_trans,sv_rhs2);
}


/** \brief <tt>sv_lhs += alpha * op(P_rhs1) * vs_rhs2</tt>.
 * 
 * This function will not resize the sparse vector lhs and will add
 * new elements for the nonzero elements in the rhs.  Therefore it is
 * up to the client to ensure that there is sufficient storage for
 * these elements.  This function will not check to see if elements
 * with duplicate indexes are added. It is up to the client to determine
 * that.  If <tt>sv_lhs</tt> is sorted on input and <tt>op(P_rhs1)</tt>
 * is sorted by row, then <tt>sv_lhs->is_sorted() == true</tt> on output.
 * 
 * This function will execute in <tt>O(P_rhs1.nz())</tt> time.
 */ 
void Vp_StMtV(
  SpVector* sv_lhs, value_type alpha, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const DVectorSlice& vs_rhs2
  );

inline
/** \brief <tt>sv_lhs += op(P_rhs1) * vs_rhs2</tt>.
 */ 
void Vp_MtV(
  SpVector* sv_lhs, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const DVectorSlice& vs_rhs2
  )
{
  Vp_StMtV(sv_lhs,1.0,P_rhs1,P_rhs1_trans,vs_rhs2);
}

/// <tt>vs_lhs = alpha * op(P_rhs1) * vs_rhs2 + beta * vs_lhs</tt>
void Vp_StMtV(
  DVectorSlice* vs_lhs, value_type alpha, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const DVectorSlice& vs_rhs2, value_type beta = 1.0
  );

/// <tt>vs_lhs = alpha * op(P_rhs1) * sv_rhs2 + beta * vs_lhs</tt>
void Vp_StMtV(
  DVectorSlice* vs_lhs, value_type alpha, const GenPermMatrixSlice& P_rhs1
  ,BLAS_Cpp::Transp P_rhs1_trans, const SpVectorSlice& sv_rhs2, value_type beta = 1.0)
  ;

/** \brief Find the intersection between two GenPermMatrixSlice objects.
 *
 * This subroutine has two modes.  In the first mode (<tt>Q_max_nz == 0</tt>) it just
 * computes the number of nonzero entries in the matrix:
 *
 * <tt>Q = op(P1)*op(P1)</tt>
 *
 * In the second mode (<tt>Q_max_nz > 0 && Q_row_i != NULL && Q_col_j != NULL</tt>) it also
 * computes the row and column arrays for the resultant matrix <tt>Q</tt>.  In addition
 * if <tt>Q != NULL</tt> then a GenPermMatrixSlice object will be setup with as:
 *
 * <tt>Q->initialize( op(P1).rows(), op(P2).cols(), Q_nz, 0, 0, Q_ordered_by, Q_row_i, Q_col_j, false )</tt>
 *
 * Above <tt>Q_ordered_by</tt> will be determined of the fly.
 *
 * This operation might require  O(min(op(P1).cols(),op(P2).rows()) temporary storage
 * but will always be executed in:
 *
 * O(P1.nz()) + O(P2.nz()) + O(min(op(P1).cols(),op(P2).rows())
 *
 * @param  P1         [in] Right hand side permutation matrix.
 * @param  P1_trans   [in] If no_trans then op(P1) = P1 otherwise op(P1) = P1'.
 * @param  P1         [in] Left hand side permutation matrix.
 * @param  P1_trans   [in] If no_trans then op(P2) = P2 otherwise op(P2) = P2'.
 * @param  Q_nz       [out] On return will contain the number of nonzeros in the
 *                    resultant matrix <tt>Q</tt>
 * @param  Q_max_nz   [in] If <tt>Q_max_nz > 0</tt> then the resultant row <tt>Q_row_i</tt> and column <tt>Q_col_j</tt>
 *                    indices will be set.    If it turns out that <tt>Q_nz</tt> will be larger than
 *                    <tt>Q_max_nz</tt> then the exception <tt>std::length_error</tt> will be thrown and <tt>Q_row_i</tt>
 *                    and <tt>Q_col_j</tt> may be left in an inconsistent state. If <tt>Q_max_nz == 0</tt> then the
 *                    rest of the return arguments are ignored and the resultant matrix will not be returned.
 * @param  Q_row_i    [out] Array (length <tt>Q_max_nz</tt>): If <tt>Q_max_nz > 0</tt> then out return <tt>Q_row_i[k], k=0,,,Q_nz-1</tt>
 *                    will contain the row indices for the resultant matrix <tt>Q</tt>.  If <tt>Q_max_nz == 0</tt> then
 *                    <tt>Q_row_i</tt> can be <tt>NULL</tt>.
 * @param  Q_row_i    [out] Array (length <tt>Q_max_nz</tt>): If <tt>Q_max_nz > 0</tt> then out return <tt>Q_col_j[k], k=0,,,Q_nz-1</tt>
 *                    will contain the column indices for the resultant matrix <tt>Q</tt>.  If <tt>Q_max_nz == 0</tt> then
 *                    <tt>Qd_col_j</tt> can be <tt>NULL</tt>.
 * @param  Q          [out] If <tt>Q_max_nz > 0 && Q != NULL</tt> then <tt>Q</tt> will be initialized as described above.
 *                    It is allowed for <tt>Q == NULL</tt>.
 */
void intersection(
  const GenPermMatrixSlice     &P1
  ,BLAS_Cpp::Transp            P1_trans
  ,const GenPermMatrixSlice    &P2
  ,BLAS_Cpp::Transp            P2_trans
  ,size_type                   *Q_nz
  ,const size_type             Q_max_nz     = 0
  ,size_type                   Q_row_i[]    = NULL
  ,size_type                   Q_col_j[]    = NULL
  ,GenPermMatrixSlice          *Q           = NULL
  );

//@}

} // end namespace AbstractLinAlgPack

#endif   // GEN_PERM_MATRIX_SLICE_OP_H