/usr/include/trilinos/AbstractLinAlgPack_COOMatrixPartitionedViewClassDecl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef COO_MATRIX_PARTITIONED_VIEW_CLASS_DECL_H
#define COO_MATRIX_PARTITIONED_VIEW_CLASS_DECL_H
#include "AbstractLinAlgPack_SparseCOOPtrElement.hpp"
#include "AbstractLinAlgPack_TransSparseCOOElementViewIter.hpp"
#include "MiRefCount.h"
namespace AbstractLinAlgPack {
namespace COOMatrixPartitionedViewUtilityPack {
template <class T_Indice, class T_Value> class Partition;
template <class T_Indice, class T_Value> class TransposedPartition;
}
// ///////////////////////////////////////////////////////////////////////////////////////
// ///////////////////////////////////////////////////////////////////////////////////////
/** \brief COO Matrix partitioning view class.
*
* This class is used to provide a set of views (partitions)
* of a permuted sparse coordinate (COO) matrix sorted in Fortran
* like compatable arrays (val, ivect, jvect).
*
* The function #create_view(...)# or a constructor is called to setup a view.
* In these initizliation functions the Fortran compatable COO matrix is specified as:\\
* (#rows#,#cols#,#nz#,#val#(#nz#),#ivect#(#nz#),#jvect#(#nz#))\\
* The row and column permutations are given as a set of inverse permutation vectors:\\
* (#inv_row_perm#(#rows#),#inv_col_perm#(#cols#))\\
* And the row and column partitioning is given as:
* (#num_row_part#,#row_part#(#num_row_part#),#num_col_part#,#col_part#(#num_col_part#))
*
* After these function execute successfully the object provides views to
* the given partitions (singular or consecutive) of the given permuted COO matrix.
* The partitions are ordered by column or by row depending on the value of
* #partition_order#.
*
* For example, concider the following permuted and partitioned sparse COO matrix:
\begin{verbatim}
Non-permuted COO matrix
1 2 3 4 5
--- --- --- --- ---
1 | 1.2 1.4 |
2 | 2.1 2.2 2.4 2.5 |
3 | 3.3 |
4 | 4.5 |
5 | 5.1 5.2 5.3 5.4 |
6 | 6.3 6.5 |
7 | 7.1 7.4 |
8 | 8.2 8.3 |
==>
Permuted and partitioned COO matrix
1 3 5 2 4
------------------------------------------
| 1 2 3 4 5
| --- --- --- --- ---
|
2 | 1 | 2.1 2.5 + 2.2 2.4 |
| +
3 | 2 | 3.3 + |
| +
6 | 3 | 6.3 6.5 + |
| +++++++++++++++++++++++++++++++++++++
1 | 4 | + 1.2 1.4 |
| +
4 | 5 | 4.5 + |
| +
5 | 6 | 5.1 5.3 + 5.2 5.4 |
| +
7 | 7 | 7.1 + 7.4 |
| +
8 | 8 | 8.3 + 8.2 |
\end{verbatim}
* The following quantities are used to specify the example shown above:
\begin{verbatim}
rows = 8, cols = 5, nz = 18
val = { 2.1,5.1,7.1,1.2,2.2,5.2,8.2,3.3,5.3,6.3,8.3,1.4,2.4,5.4,7.4,2.5,4.5,6.5 }
ivect = { 2, 5, 7, 1, 2, 5, 8, 3, 5, 6, 8, 1, 2, 5, 7, 2, 4, 6 }
jvect = { 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5 }
inv_row_perm = { 4, 1, 2, 5, 6, 3, 7, 8 }
inv_col_perm = { 1, 4, 2, 5, 3 }
num_row_part = 2
row_part = { 1, 4, 9 }
num_col_part = 2
col_part = { 1, 4, 6 }
\end{verbatim}
* The partitions are ordered by row or column counting from the upper left hand partition.
* For this example the partitions are numbered as:
\begin{verbatim}
partition_order = PARTITION_BY_ROW partition_order = PARTITION_BY_COL
-------------- ---------------
| 1 | 2 | | 1 | 3 |
|-------|------| |-------|-------|
| 3 | 4 | | 2 | 4 |
-------------- ---------------
\end{verbatim}
* The overall partition number is given by a call to #overall_part_num(row_p,col_p)# where
* #row_p# and #col_p# are the row and column parition numbers respectively. In the example,
* the lower left partition has #row_p# = 2 and #col_p# = 1 and #overall_part_num(row_p,col_p)# would
* return 3 for #partition_order = PARTITION_BY_ROW# and 2 for #partition_order = PARTITION_BY_COL#.
*
* Also, given the overall partition number you can obtain the row and column partition numbers
* by calling #row_part_num(overall_p)# and #col_part_num(overall_p)# respectively.
*
* The row and column indices for the partitions can be extracted with calls to
* #get_row_part(row_part)# and #get_col_part(col_part)# respectively.
*
* Actual paritions or consecutive partitions are accessed by way of objects of the types
* #partition_type# and #transposed_partition_type#. These types conform to the
* COOMatrixTemplateInterface specification so they can be used with the associated templated
* linear algebra operations. A #partition_type# object
* is created by a call to #partition(overall_p)# or #partition(row_p,col_p)# for
* single partitions and #partition(Range1D(overall_p1,overall_p2))# for consecutive partitions.
* For example you could create a partition object for the first partition by calling
* #partition(1)# or #partition(1,1)# or #partition(Range1D(1,1))#. You can
* create a transposed parition object by calling the nonmember function
* #transposed_partition_type trans(parition_type&)#. In the above example, using
* parition ordering by column you could create a transposed view of the two left hand
* side partitions by calling #trans(this->partition(Range1D(1,2)))#.
*
* All of this gives the client a lot of flexibility in how a COO matrix is accessed.
*
* The default copy constructor is allowed. The default assignment operator is not allowed.
*/
template <class T_Indice, class T_Value>
class COOMatrixPartitionedView {
public:
// //////////////////////////////////////////////////////////////////////////
/** @name Public Types */
//@{
/** \brief . */
typedef COOMatrixPartitionedViewUtilityPack::Partition<T_Indice,T_Value>
partition_type;
/** \brief . */
typedef COOMatrixPartitionedViewUtilityPack::TransposedPartition<T_Indice,T_Value>
transposed_partition_type;
/** \brief . */
typedef T_Indice indice_type;
/** \brief . */
typedef AbstractLinAlgPack::size_type size_type;
/** \brief . */
typedef ptrdiff_t difference_type;
/** \brief . */
enum EPartitionOrder { PARTITION_BY_ROW, PARTITION_BY_COL };
/** \brief . */
class UninitializedException: public std::logic_error
{public: UninitializedException(const std::string& what_arg) : std::logic_error(what_arg) {}};
//@}
// ///////////////////////////////////////////////////////////////////////////////////////
/** @name Public interface */
//@{
/** @name Constructors and initializes
*
* The default copy constructor is allowed. The constructed object will share
* the storage space for the COO matrix view.
*/
//@{
/** \brief Construct with no view set.
*
* Postconditions:\begin{itemize}
* \item #rows() == 0#
* \item #cols() == 0#
* \item #nz() == 0#
* \end{itemize}
*
*/
COOMatrixPartitionedView();
/** \brief Construct with a view to a partitioned COO matrix set.
*
* Equivalent to calling the default constructor then #create_view(...)#.
*/
COOMatrixPartitionedView(
size_type rows
, size_type cols
, size_type nz
, value_type val[]
, const indice_type ivect[]
, const indice_type jvect[]
, const size_type inv_row_perm[]
, const size_type inv_col_perm[]
, const size_type num_row_part
, const size_type row_part[]
, const size_type num_col_part
, const size_type col_part[]
, const EPartitionOrder partition_order )
: num_row_part_(0), num_col_part_(0)
{
create_view(rows, cols, nz, val, ivect, jvect, inv_row_perm, inv_col_perm, num_row_part
, row_part, num_col_part, col_part, partition_order);
}
// I tried defining this function else where as both an inlined and
// noninlined function but MS VC++ 5.0 generated
// a linking error saying that it could not find this function.
// ToDo: Investagate this problem further at a latter time.
/** \brief Crete a view to a COO matrix.
*
* The arguments to this function specify COO matrix
* (#rows#,#cols#,#nz#,#val#(#nz#),#ivect#(#nz#),#jvect#(#nz#))
* a set of row and column permutations
* (#inv_row_perm#(#rows#),#inv_col_perm#(#cols#))
* and a set of row and column partitions:
* (#num_row_part#,#row_part#(#num_row_part#),#num_col_part#,#col_part#(#num_col_part#))
*
* After this function executes successfully #this# object provides views to
* the given partitions (singular or consecutive) of the given permuted COO matrix.
* The partitions are ordered by column or by row depending on the value of
* #partition_order#.
*
* Warning! Duplicate elements (#ivect[k1] == ivect[k2] && jvect[k1] == jvect[k2]#)
* are not looked for in the input COO matrix. It is up to the client to make sure
* that there are no duplicates since this is an expensive test since the matrix
* elements are not assumed to be sorted.
*
* It is important to note that #this# object keeps a pointer to the array
* of nonzero elements in #val# passed into this function. Therefore,
* the numerical values of these elements can be altered and #this# object
* will still provide the view into this coordinate matrix. If the memory
* pointed to by #val# change then this operation must be called again
* setupd the view again.
*
* Preconditions:\begin{itemize}
* \item #nz <= rows * cols#, (throw #std::invalid_argument#)
* \item #rows >= ivect[#k#] >= 1#, k = 0,...,#nz-1# (throw #std::out_of_range#)
* \item #cols >= jvect[#k#] >= 1#, k = 0,...,#nz-1# (throw #std::out_of_range#)
* \item #num_row_part <= rows#, (throw #std::invalid_argument#)
* \item #num_col_part <= cols#, (throw #std::invalid_argument#)
* \item #rows >= inv_row_perm[#i#] >= 1#, i = 0,...,#rows-1# (throw #std::out_of_range#)
* \item #cols >= inv_col_perm[#j#] >= 1#, j = 0,...,#cols-1# (throw #std::out_of_range#)
* \item #inv_row_perm[#i1#] != inv_row_perm[#i2]#, for i1 anb i2 in set {0,...,#rows-1#}
* \item #inv_col_perm[#j1#] != inv_col_perm[#j2]#, for j1 anb j2 in set {0,...,#cols-1#}
* \item #row_part[#k+1#] > row_part[#k#]#, k = 0,...,#num_row_part-2# (throw #std::domain_error#)
* \item #col_part[#k+1#] > col_part[#k#]#, k = 0,...,#num_col_part-2# (throw #std::domain_error#)
* \item #row_part[num_row_part-1] <= rows + 1# (throw #std::out_of_range#)
* \item #col_part[num_col_part-1] <= cols + 1# (throw #std::out_of_range#)
* \item #partition_order == PARTITION_BY_ROW || partition_order == PARTITION_BY_COL#
* (throw #std::invalid_argument#)
* \end{itemize}
*
* Postconditions:\begin{itemize}
* \item ?
* \end{itemize}
*
* @param rows number of rows in the COO matrix.
* @param cols number of columns in the COO matrix.
* @param nz number of nonzero elements in the COO matrix.
* @param val array (length #nz#) of the values of the nonzero elements in the COO matrix.
* @param ivect array (length #nz#) of the row indices (1-based) in the original COO matrix.
* @param jvect array (length #nz#) of the column indices (1-based) in the original COO matrix.
* @param inv_row_perm array (length #rows#) for the inverse row permutations.
* row_i_new == #inv_row_perm[#row_i_old#]#.
* @param inv_col_perm array (length #cols#) for the inverse column permutations.
* col_j_new == #inv_col_perm[#col_j_old#]#..
* @param num_row_part number of row partitions for the partitioned view to create.
* @param row_part array (length #num_row_part#) that specifies the row partitions.
* The first #num_row_part# elements of #row_part# give the row indices
* for the starts of the partitions. The last element gives the row
* indice one past the last row in the last partition.
* @param num_col_part number of column partitions for the partitioned view to create.
* @param col_part array (length #num_col_part#) that specifies the column partitions.
* The first #num_col_part# elements of #col_part# give the column indices
* for the starts of the partitions. The last element gives the column
* indice one past the last column in the last partition.
* @param parition_order PARTITION_BY_ROW: the overall partitions are numbered from left to
* right by row starting at the upper left partition. PARTITION_BY_COL
* the overall partitions are numbered from top to bottom by column
* starting at the upper left partition.
*/
void create_view(
size_type rows
, size_type cols
, size_type nz
, value_type val[]
, const indice_type ivect[]
, const indice_type jvect[]
, const size_type inv_row_perm[]
, const size_type inv_col_perm[]
, const size_type num_row_part
, const size_type row_part[]
, const size_type num_col_part
, const size_type col_part[]
, const EPartitionOrder partition_order );
/** \brief Bind the view of another partitioned matrix.
*
* After being called #this# and #coom_view# will share storage
* for the same COO matrix view.
*/
void bind(const COOMatrixPartitionedView& coom_view);
/// Free the allocated memory and make uninitialized
void free();
/// Returns true if a view has been initialized.
bool is_initialized() const;
//@}
/** @name Partitioning information
*
* All of these member functions have the followin preconditions:
*
* Preconditions:\begin{itemize}
* \item #is_initialized() == true# (throw #UninitializedException#)
* \end{itemize}
* */
//@{
/// return the number of rows of the total view
size_type rows() const;
/// return the number of columns in the total view
size_type cols() const;
/// return the number of nonzero elements in the total view
size_type nz() const;
/// return the number row partitions
size_type num_row_part() const;
/// return the number column partitions
size_type num_col_part() const;
/** \brief get the array of row partitions.
*
* @param row_part [O] array (length #this->num_row_part() + 1#) of
* row indices of start of the row partitions.
*/
void get_row_part(indice_type row_part[]) const;
/** \brief get the array of column partitions.
*
* @param col_part [O] array (length #this->num_col_part() + 1#) of
* column indices of start of the column partitions.
*/
void get_col_part(indice_type col_part[]) const;
/// Returns whether the paritions or sorted by row or by column.
EPartitionOrder partition_order() const;
/** \brief Returns the overall partition number (1 to #num_row_part() * num_col_part()#)
* given the row (1 to #num_row_part()#) and column (1 to #num_col_part()#) partition numbers.
*/
size_type overall_part_num(size_type row_p, size_type col_p) const;
/// Returns the row parition number (1-based) given the overall partition number (1-based)
size_type row_part_num(size_type overall_p) const;
/// Returns the column parition number (1-based) given the overall partition number (1-based)
size_type col_part_num(size_type overall_p) const;
//@}
/** @name Partition access
*
* All of these member functions have the followin preconditions:
*
* Preconditions:\begin{itemize}
* \item #is_initialized() == true# (throw #UninitializedException#)
* \end{itemize}
*/
//@{
// ///
// /** Allow an implicit conversion from a COOMatrixPartitionedView
// * to a partition_type object.
// *
// * This conversion is equivalent to calling #partition(Range1D())#.
// */
// operator partition_type();
//
// ///
// operator const partition_type() const;
/** \brief Return a partition object for the entire view.
*/
partition_type operator()();
/** \brief . */
const partition_type operator()() const;
/** \brief Return a partition object for a parition given its overall partition number (1-based).
*/
partition_type partition(size_type overall_p);
/** \brief . */
const partition_type partition(size_type overall_p) const;
/** \brief Return a partition object for a parition given its row and column
* partition numbers.
*/
partition_type partition(size_type row_p, size_type col_p);
/** \brief . */
const partition_type partition(size_type row_p, size_type col_p) const;
/** \brief Return a partition object for a range of continous overall partition numbers.
*
* This is probably only usefull when a set of rows of submatrices or column
* submatrices need to be accessed. For example, if the paritions are
* ordered by column and if you want to access the first n columns of partition
* submatrices you would call.
*
* #this->partition(Range1D(1,this->overall_part_num(this->num_row_part(),n)))#
*
* @param rng_overall_p [I] the range of overall partitions.
* If #rng_overall_p.full_range() == true# then
* all of the partitions will be returned.
*/
partition_type partition(Range1D rng_overall_p);
/** \brief . */
const partition_type partition(Range1D rng_overall_p) const;
//@}
//@}
private:
// ////////////////////////////////////////////////////////////////
// Private types
typedef SparseCOOPtrElement<T_Indice,T_Value> element_type;
typedef std::vector<indice_type> vector_indice_type;
typedef std::vector<size_type> vector_size_type;
typedef std::vector<element_type> ele_type;
typedef MemMngPack::RefCount<
vector_indice_type> ref_vector_indice_type;
typedef MemMngPack::RefCount<
vector_size_type> ref_vector_size_type;
typedef MemMngPack::RefCount<
ele_type> ref_ele_type;
// ///////////////////////////////////////////////////////////////
// Private data members
size_type num_row_part_;
// The number of partions the COO matrix is sliced up into by rows.
size_type num_col_part_;
// The number of partions the COO matrix is sliced up into by columns.
ref_vector_size_type ref_row_part_;
//
// row_part = { row_p_1_i, row_p_2_i,...,row_p_nrp_i, row_p_nrp_last_i + 1 }
// where: row_p_k_i is the row indice for row partition k
// nrp = num_row_part
// row_p_nrp_last_i is the last row indice in the last row partition
//
// vector (length num_row_part_ + 1) of row indices for the start of the row partitions.
// row_part[i - 1] is the row indice for the start of the ith row partition (i = 1,...,num_row_part_).
// The last indice gives the row indice that is one past the last row of the last
// row partition. It is included for the efficient calculation of the number of rows
// in a partition or a set of partitions.
ref_vector_size_type ref_col_part_;
//
// col_part = { col_p_1_i, col_p_2_i,...,col_p_nrp_i, col_p_nrp_last_i + 1 }
// where: col_p_k_i is the col indice for col partition k
// nrp = num_col_part
// col_p_nrp_last_i is the last col indice in the last col partition
//
// vector (length num_row_part_ + 1) of column indices for the start of the columns partitions.
// col_part[j - 1] is the column indice for the start of the jth column partition (j = 1,...,num_col_part_).
// The last indice gives the column indice that is one past the last column of the last
// column partition. It is included for the efficient calculation of the number of columns
// in a partition or a set of partitions.
EPartitionOrder partition_order_;
// Specifies wheather the partitions are to be orded by columns or rows
ref_ele_type ref_ele_;
// ToDo: replace with a RefCount<std::vector<element_type>> when you get compiler bug fix.
// The storage array (dynamically allocated) for the elements in the COO matrix.
// The elements in this array are ordered into partitions defined by the partition_order_.
//
// ele_
// ---------------------
// |pval row_i col_i|
// || | | | | ||-
// || | | | | || parition 1
// || | | | | ||
// || | | | | ||-
// || | | | | || parition 2
// || | | | | ||
// || | | | | ||-
// || | | | | || .
// || | | | | || .
// || | | | | || .
// || | | | | ||
// || | | | | ||-
// || | | | | || partition num_row_part * num_col_part
// || | | | | ||
// || | | | | ||-
// ---------------------
ref_vector_size_type ref_part_start_;
//
// part_start = { start_1 = 0, start_2,..., start_n, total_nz }
//
// vector (length num_row_part * num_col_part_ + 1) of the start for the elements in
// each partition. ele_[part_start_[overall_p - 1]] gives the first element of partion
// overal_p and ele_[part_start_[overall_p] - 1] gives the last element in the partition.
// This array is also used to calculate the number of nonzero elements in each parition
// and in the overall partition. The last element part_start_[num_row_part * num_col_part_]
// gives the total number of nonzeros in all of the partitions and is also used
// to allow the calculation of the number of nonzero elements in the last partition.
// When the view is uninitialized then ele_, row_part_, col_part_ and part_start_ will
// all uninitialized.
// ///////////////////////////////////////////////////////////////
// Private member functions
// assert that the object is initialized
void assert_initialized() const;
size_type imp_overall_part_num(size_type row_p, size_type col_p) const;
size_type imp_row_part_num(size_type overall_p) const;
size_type imp_col_part_num(size_type overall_p) const;
// Return the partition number given an indice.
// Passing the partition vector is an optimization
// that allows us to only call .obj() once
// on the reference object and thus same some
// unnecessary work.
size_type part_num(const vector_size_type& part, size_type indice);
// Return the overall partition number
size_type overall_p_from_ij(const vector_size_type& row_part
, const vector_size_type& col_part, size_type i, size_type j);
// Return a non-const partition. This is the function
// that implements all partition creations.
partition_type create_partition(Range1D rng_overall_p) const;
// Not defined and not to be called
COOMatrixPartitionedView& operator=(const COOMatrixPartitionedView&);
}; // end class COOMatrixPartitionedView
namespace COOMatrixPartitionedViewUtilityPack {
/** @name COOMatrixPartitionedViewUtilityPack
* @memo C++ namespace
*/
//@{
// ///////////////////////////////////////////////////////////////////////
// ///////////////////////////////////////////////////////////////////////
/** \brief Class for a partition or a set of continous
* partitions in a partitioned COO matrix.
*
* This class represents the abstraction of the
* submatrx or submatrices in a partion or
* a set of continous partitions in a COO matrix.
*
* Its interface conforms to the template specification
* COOMatrixTemplateInterface so that it can be used
* with all of the linear algebra functions defined
* for that interface.
*/
template <class T_Indice, class T_Value>
class Partition {
public:
// /////////////////////////////////////////////////////
/** @name Public types */
//@{
/** \brief . */
typedef AbstractLinAlgPack::size_type size_type;
/** \brief . */
typedef Partition<T_Indice,T_Value> partition_type;
/** \brief . */
typedef ptrdiff_t difference_type;
/** \brief . */
typedef SparseCOOPtrElement<T_Indice,T_Value> element_type;
/** \brief . */
typedef element_type* iterator;
/** \brief . */
typedef const element_type* const_iterator;
//@}
// /////////////////////////////////////////////////////
/** @name Public interface */
//@{
/** @name Constructors and initializes
*
* The default copy constructor is allowed since it has the
* proper sematics.
*/
//@{
/** \brief Constructs an uninitialized partition view.
*
* Postconditions:\begin{itemize}
* \item #rows() == 0#
* \item #cols() == 0#
* \item #nz() == 0#
* \item #row_offset() == 0#
* \item #col_offset() == 0#
* \end{itemize}
*
*/
Partition();
/** \brief Construct with the COO matrix initialized.
*
* Equivalent to calling the default constructor and #initialize(...)#.
*/
Partition(
size_type rows
, size_type cols
, size_type nz
, element_type* ele
, difference_type row_offset
, difference_type col_offset );
/** \brief Initialize the COO matrix.
*
* @param rows number of rows in the submatrix
* @param cols number of columns in the submatrix
* @param nz number of nonzero elements in the submatrix
* @param ele pointer to the array of nonzero elements in the submatrix
* @param row_offset offset for each nonzero row indice in #ele#.
* i = #ele#[...].row_i + #row_offset#
* @param row_offset offset for each nonzero column indice in #ele#.
* j = #ele#[...].col_j + #col_offset#
*/
void initialize(
size_type rows
, size_type cols
, size_type nz
, element_type* ele
, difference_type row_offset
, difference_type col_offset );
/** \brief bind to a partion.
*
* ToDo: finish documentation for this function
*/
void bind(const partition_type& partition);
//@}
/** @name COOMatrixTemplateInterface interface */
//@{
/** \brief . */
size_type rows() const;
/** \brief . */
size_type cols() const ;
/** \brief . */
size_type nz() const;
/** \brief . */
difference_type row_offset() const;
/** \brief . */
difference_type col_offset() const;
/** \brief . */
iterator begin();
/** \brief . */
const_iterator begin() const;
/** \brief . */
iterator end();
/** \brief . */
const_iterator end() const;
//@}
//@}
private:
// //////////////////////////////////////////////////////
// Private types
// //////////////////////////////////////////////////////
// Private data members
size_type rows_, // The number of rows in this COO matrix
cols_, // The number of columns in this COO matrix
nz_; // The number of nonzero elements in this COO matrix
element_type *ele_; // pointer to array of elements in this COO matrix
difference_type row_offset_, // offset for each row indice stored in ele
col_offset_; // offset for each column indice stored in ele
// //////////////////////////////////////////////////////
// Private member functions
// assert that we are initialized
void assert_initialized() const;
// not defined and not to be called
Partition& operator=(const Partition&);
}; // end class Partition
// /////////////////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////////////////
/** \brief Class for the transpose of a Partition
*
* This class represents the abstraction of the
* transpose of the matrix given by a Partition<> class.
*
* Its interface conforms to the template specification
* COOMatrixTemplateInterface so that it can be used
* with all of the linear algebra functions defined
* for this interface.
*
* This is a very light weight class and is just
* as efficient as Partition when used with templated
* linear algebra operations.
*
* The default constructor is allowed in which case it is initialized
* to a default constructed partition object. Also to the default
* copy constructor is allowed. The default assignment operator however
* is not allowed since its meaning is a little confusing. When a client
* wants to copy the underlying partition, it should use the #bind()#
* member function instead.
*/
template <class T_Indice, class T_Value>
class TransposedPartition {
public:
// /////////////////////////////////////////////////////
/** @name Public types */
//@{
/** \brief . */
typedef Partition<T_Indice,T_Value> partition_type;
/** \brief . */
typedef AbstractLinAlgPack::size_type size_type;
/** \brief . */
typedef ptrdiff_t difference_type;
/** \brief . */
typedef SparseCOOPtrElement<T_Indice,T_Value> element_type;
/** \brief . */
typedef TransSparseCOOElementViewIter<
element_type*
, std::random_access_iterator_tag
, typename element_type::indice_type
, typename element_type::value_type&
, difference_type> iterator;
/** \brief . */
typedef TransSparseCOOElementViewIter<
const element_type*
, std::random_access_iterator_tag
, typename element_type::indice_type
, const typename element_type::value_type&
, difference_type> const_iterator;
//@}
// /////////////////////////////////////////////////////
/** @name Public interface */
//@{
/** @name Constructors and initializes
*
* The default copy constructor is allowed since it has the
* proper sematics.
*/
//@{
/** \brief Construct with the partition initialized.
*
* ToDo: finish documentation for this function
*/
TransposedPartition(const partition_type& partition);
/** \brief bind to a partion.
*
* ToDo: finish documentation for this function
*/
void bind(const partition_type& partition);
//@}
/** @name COOMatrixTemplateInterface interface */
//@{
/** \brief . */
size_type rows() const;
/** \brief . */
size_type cols() const;
/** \brief . */
size_type nz() const;
/** \brief . */
difference_type row_offset() const;
/** \brief . */
difference_type col_offset() const;
/** \brief . */
iterator begin();
/** \brief . */
const_iterator begin() const;
/** \brief . */
iterator end();
/** \brief . */
const_iterator end() const;
//@}
//@}
private:
partition_type partition_; // actually stores a partition object.
// Not defined and not to be called
TransposedPartition& operator=(const TransposedPartition&);
}; // end class TransposedPartition
// end COOMatrixPartitionedViewUtilityPack
//@}
} // end namespace COOMatrixPartitionedViewUtilityPack
// //////////////////////////////////////////////////////////////////////////
// Nonmember functions
/** \brief Create a transposed view of a partition object.
*/
template<class T_Indice, class T_Value>
inline COOMatrixPartitionedViewUtilityPack::TransposedPartition<T_Indice,T_Value>
trans(COOMatrixPartitionedViewUtilityPack::Partition<T_Indice,T_Value>& part)
{
typedef COOMatrixPartitionedViewUtilityPack::TransposedPartition<T_Indice,T_Value>
transposed_partition_type;
return transposed_partition_type(part);
}
// ///////////////////////////////////////////////////////////////////////////
// Inline member function definitions
namespace COOMatrixPartitionedViewUtilityPack {
// ///////////////////////////////////////////////////////////////////////////
// Inline members for class COOMatrixPartitionedViewUtilityPack::Partition<>
// Constructors and initializes
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::Partition()
: rows_(0), cols_(0), nz_(0), ele_(0), row_offset_(0), col_offset_(0)
{}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::Partition(
size_type rows
, size_type cols
, size_type nz
, element_type* ele
, difference_type row_offset
, difference_type col_offset )
: rows_(rows), cols_(cols), nz_(nz), ele_(ele), row_offset_(row_offset)
, col_offset_(col_offset)
{}
template <class T_Indice, class T_Value>
inline void Partition<T_Indice,T_Value>::initialize(
size_type rows
, size_type cols
, size_type nz
, element_type* ele
, difference_type row_offset
, difference_type col_offset )
{
rows_ = rows;
cols_ = cols;
nz_ = nz;
ele_ = ele;
row_offset_ = row_offset;
col_offset_ = col_offset;
}
template <class T_Indice, class T_Value>
inline void Partition<T_Indice,T_Value>::bind(const partition_type& partition) {
initialize(partition.rows_,partition.cols_,partition.nz_,partition.ele_
,partition.row_offset_,partition.col_offset_);
}
// COOMatrixTemplateInterface interface
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::size_type
Partition<T_Indice,T_Value>::rows() const
{
return rows_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::size_type
Partition<T_Indice,T_Value>::cols() const
{
return cols_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::size_type
Partition<T_Indice,T_Value>::nz() const
{
return nz_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::difference_type
Partition<T_Indice,T_Value>::row_offset() const
{
return row_offset_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::difference_type
Partition<T_Indice,T_Value>::col_offset() const
{
return col_offset_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::iterator
Partition<T_Indice,T_Value>::begin()
{
assert_initialized();
return ele_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::const_iterator
Partition<T_Indice,T_Value>::begin() const
{
assert_initialized();
return ele_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::iterator
Partition<T_Indice,T_Value>::end()
{
assert_initialized();
return ele_ + nz_;
}
template <class T_Indice, class T_Value>
inline Partition<T_Indice,T_Value>::const_iterator
Partition<T_Indice,T_Value>::end() const
{
assert_initialized();
return ele_ + nz_;
}
// Private member functions
template <class T_Indice, class T_Value>
inline void Partition<T_Indice,T_Value>::assert_initialized() const {
if(!ele_)
throw std::logic_error("Partition<...> :"
"The COO matrix was not initizlized");
}
// ///////////////////////////////////////////////////////////////////////////
// Inline members for class COOMatrixPartitionedViewUtilityPack::TransposedPartition<>
// Constructors and initializes
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::TransposedPartition(const partition_type& partition)
: partition_(partition)
{}
template <class T_Indice, class T_Value>
inline void TransposedPartition<T_Indice,T_Value>::bind(const partition_type& partition) {
partition_.bind(partition);
}
// COOMatrixTemplateInterface interface
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::size_type
TransposedPartition<T_Indice,T_Value>::rows() const
{
return partition_.cols();
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::size_type
TransposedPartition<T_Indice,T_Value>::cols() const
{
return partition_.rows();
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::size_type
TransposedPartition<T_Indice,T_Value>::nz() const
{
return partition_.nz();
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::difference_type
TransposedPartition<T_Indice,T_Value>::row_offset() const
{
return partition_.col_offset();
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::difference_type
TransposedPartition<T_Indice,T_Value>::col_offset() const
{
return partition_.row_offset();
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::iterator
TransposedPartition<T_Indice,T_Value>::begin()
{
return iterator(partition_.begin());
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::const_iterator
TransposedPartition<T_Indice,T_Value>::begin() const
{
return const_iterator(partition_.begin());
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::iterator
TransposedPartition<T_Indice,T_Value>::end()
{
return iterator(partition_.end());
}
template <class T_Indice, class T_Value>
inline TransposedPartition<T_Indice,T_Value>::const_iterator
TransposedPartition<T_Indice,T_Value>::end() const
{
return const_iterator(partition_.end());
}
} // end namespace COOMatrixPartitionViewUtilityPack
// ///////////////////////////////////////////////////////////////////////////
// Inline members for class COOMatrixPartitionedView<>
// Constructors and initializes
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::COOMatrixPartitionedView()
: num_row_part_(0), num_col_part_(0)
{}
template <class T_Indice, class T_Value>
inline bool COOMatrixPartitionedView<T_Indice,T_Value>::is_initialized() const {
return ref_ele_.has_ref_set();
}
// Partitioning information
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::rows() const
{
assert_initialized();
const std::vector<size_type> &row_part = ref_row_part_.const_obj();
return row_part[num_row_part_] - row_part[0];
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::cols() const
{
assert_initialized();
const std::vector<size_type> &col_part = ref_col_part_.const_obj();
return col_part[num_col_part_] - col_part[0];
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::nz() const
{
assert_initialized();
return ref_part_start_.const_obj()[num_row_part_ * num_col_part_];
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::num_row_part() const
{
return num_row_part_;
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::num_col_part() const
{
return num_col_part_;
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::EPartitionOrder
COOMatrixPartitionedView<T_Indice,T_Value>::partition_order() const
{
assert_initialized();
return partition_order_;
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::overall_part_num(size_type row_p, size_type col_p) const
{
assert_initialized();
return imp_overall_part_num(row_p, col_p);
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::row_part_num(size_type overall_p) const
{
assert_initialized();
return imp_row_part_num(overall_p);
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::col_part_num(size_type overall_p) const
{
assert_initialized();
return imp_col_part_num(overall_p);
}
// Partition access
//template <class T_Indice, class T_Value>
//inline COOMatrixPartitionedView<T_Indice,T_Value>::operator
//COOMatrixPartitionedView<T_Indice,T_Value>::partition_type()
//{
// return partition(Range1D());
//}
//template <class T_Indice, class T_Value>
//inline COOMatrixPartitionedView<T_Indice,T_Value>::operator
//const COOMatrixPartitionedView<T_Indice,T_Value>::partition_type() const
//{
// return partition(Range1D());
//}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::operator()()
{
return partition(Range1D());
}
template <class T_Indice, class T_Value>
inline const COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::operator()() const
{
return partition(Range1D());
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::partition(size_type overall_p)
{
return partition(Range1D(overall_p,overall_p));
}
template <class T_Indice, class T_Value>
inline const COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::partition(size_type overall_p) const
{
return partition(Range1D(overall_p,overall_p));
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::partition(size_type row_p, size_type col_p)
{
return partition(overall_part_num(row_p,col_p));
}
template <class T_Indice, class T_Value>
inline const COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::partition(size_type row_p, size_type col_p) const
{
return partition(overall_part_num(row_p,col_p));
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::partition(Range1D rng_overall_p)
{
return create_partition(rng_overall_p);
}
template <class T_Indice, class T_Value>
inline const COOMatrixPartitionedView<T_Indice,T_Value>::partition_type
COOMatrixPartitionedView<T_Indice,T_Value>::partition(Range1D rng_overall_p) const
{
return create_partition(rng_overall_p);
}
// Private member functions
template <class T_Indice, class T_Value>
inline void COOMatrixPartitionedView<T_Indice,T_Value>::assert_initialized() const {
if(!is_initialized())
throw UninitializedException("COOMatrixPartitionedView<..>::assert_initialized() :"
" The partitioned view has not been initialized.");
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::imp_overall_part_num(size_type row_p, size_type col_p) const
{
return (partition_order_ == PARTITION_BY_ROW) ?
(row_p - 1) * num_col_part_ + col_p :
(col_p - 1) * num_row_part_ + row_p;
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::imp_row_part_num(size_type overall_p) const
{
return (partition_order_ == PARTITION_BY_ROW) ?
(overall_p - 1) / num_col_part_ + 1 :
(overall_p - 1) % num_row_part_ + 1 ;
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::imp_col_part_num(size_type overall_p) const
{
return (partition_order_ == PARTITION_BY_COL) ?
(overall_p - 1) / num_row_part_ + 1 :
(overall_p - 1) % num_col_part_ + 1 ;
}
template <class T_Indice, class T_Value>
inline COOMatrixPartitionedView<T_Indice,T_Value>::size_type
COOMatrixPartitionedView<T_Indice,T_Value>::overall_p_from_ij(const vector_size_type& row_part
, const vector_size_type& col_part, size_type i, size_type j)
{
return imp_overall_part_num( part_num(row_part,i)
, part_num(col_part,j) );
}
} // end namespace AbstractLinAlgPack
#endif // COO_MATRIX_PARTITIONED_VIEW_CLASS_DECL_H
|