This file is indexed.

/usr/include/trilinos/AbstractLinAlgPack_BasisSystem.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// @HEADER
// ***********************************************************************
// 
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
//                  Copyright (2003) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef ABSTRACT_LIN_ALG_PACK_BASIS_SYSTEM_H
#define ABSTRACT_LIN_ALG_PACK_BASIS_SYSTEM_H

#include "AbstractLinAlgPack_Types.hpp"
#include "Teuchos_AbstractFactory.hpp"
#include "Teuchos_RCP.hpp"

namespace AbstractLinAlgPack {

/** \brief Interface for the creation and maintainance of a basis matrix for a decomposition of
 * linearlized constriants.
 *
 * <b>Overview:</b>
 *
 * This interface is designed to take the Jacobian for a sub-set of equality constraints
 * \f$ \nabla c \f$ and to create a basis matrix.
 * Assume we have the folloing linealrized equality constraints:
 *
 \f[ \nabla c^T d + c = 0 \f]
 *
 * The C++ identifier given to \f$ \nabla c \f$ is <tt>Gc</tt>.
 *
 * In this basis interface we will assume that <tt>d</tt>, <tt>c</tt> and <tt>h</tt> are
 * sorted such that we define the following sets (given the partitioning matrices
 * \f$ Q_{x} = \left[\begin{array}{c} Q_{xD} \\ Q_{xI} \end{array}\right] \f$,
 * \f$ Q_{c} = \left[\begin{array}{c} Q_{cD} \\ Q_{cU} \end{array}\right] \f$,
 * ):
 * <ul>
 * <li> <tt>d(var_dep)</tt> (\f$ d_D = Q_{xD} d\f$) : Dependent (i.e. basis) variables.
 * <li> <tt>d(var_indep)</tt> (\f$ d_I = Q_{xI} d\f$) : Independent (i.e. nonbasic) variables.
 * <li> <tt>c(equ_decomp)</tt> (\f$ c_D = Q_{cD} c\f$) : Decomposed equality constriants.
 * <li> <tt>c(equ_undecomp)</tt> (\f$ c_U = Q_{cU} c\f$): Undecomposed equality constriants.
 * </ul>
 * Given these partitionings we can define a basis matrix \a C for the
 * following Jacobian sub-matrices (in mathematical and Matlab-like notation):
 \f[
    C = Q_{cD} \nabla c_T (Q_{xD})^T
 \f]
 \verbatim

 C = Gc(var_dep,equ_decomp)'
 \endverbatim
 * We can also define a nonbasis matrix \a N for the decomposed constraints as:
 \f[
    N = Q_{cD} \nabla c^T (Q_{xI})^T
 \f]
 \verbatim

 N = Gc(var_indep,equ_decomp)'
 \endverbatim
 * Given the definitions of \a C and \a N above, we can define the following
 * direct-sensitivity matrix <tt>D</tt>:
 \f[
   D = - C^{-1} N
 \f]
 \verbatim

  D = -inv(C)*N
 \endverbatim
 * Given this matrix \a D, we can define another projected sensistivity matrix:
 * <ul>
 * <li> <tt>GcUP = Gc(var_indep,equ_undecomp)'   + Gc(var_dep,equ_undecomp)'   * D</tt>
 * </ul>
 *
 * This interface allows a client to create the basis matrix <tt>C</tt> and optionally
 * the direct sensitivity matrix <tt>D = -inv(C)*N</tt> and the auxiliary projected
 * sensistivity matrix <tt>GcUP</tt> (shown above).  These matrix
 * objects are independent from \c this \c BasisSystem object or from other \a C, \a D,
 * or \c GcUP objects.  Therefore, a <tt>%BasisSystem</tt> object can be thought of
 * as an "Abstract Factory" for basis matrices and auxillary matrices.  Note that
 * a <tt>%BasisSystem</tt> object will not compute the matrices \c D, \c GcUP
 * unless specifically asked.
 *
 * Note that the purpose of this interface is to abstract client code away from the
 * details of how the matrix \c Gc is represented and implemented and how
 * the basis matrix \a C is formed and implemented.  The complexity of these matrices could
 * vary from simple dense serial matrices all the way up massively parallel matrices using
 * iterative solvers for \a C running on computers with thousands of nodes.
 *
 * This interface also allows clients to compute the matrices <tt>J = D'*D</tt> and
 * <tt>S = I + D'*D</tt>.
 *
 * <b>Client usage:</b>
 *
 * The matrix objects for <tt>C</tt>, <tt>D</tt>, <tt>GcUP</tt>,
 * <tt>D'*D</tt> and <tt>S=I+D'*D</tt> are created by the client
 * using the \c AbstractFactory<> objects returned from
 * <tt>factory_C()</tt>, <tt>factory_D()</tt>,
 * <tt>factory_GcUP()</tt>, <tt>factory_transDtD()</tt> and
 * <tt>factory_S()</tt> respectively.  These methods return smart
 * pointers to these matrix factory objects and these objects are ment
 * to have a lifetime that extends up to and beyond the lifetime of
 * the <tt>%BasisSystem</tt> object that created them.  Note that the
 * matrix objects returned by these matrix factory objects are not to
 * be considered usable until they have passed through
 * <tt>update_basis()</tt> or receive some other appropriate
 * initialization.
 *
 * The ranges of the dependent and independent variables, and decomposed and undecomposed
 * equality constriants are returned by the methods \c var_dep(), \c var_indep(),
 * \c equ_decomp() and\c equ_undecomp() respectively.  There are a few obvious assertions
 * for the values that these ranges can take on.  Assuming that \c Gc is non-null
 * when passed to \c update_basis(), the following assertions apply:
 *
 * <A NAME="ranges_assertions"></A>
 * Assertions:<ul>
 * <li> <tt>var_dep().size() == equ_decomp().size() + inequ_decomp().size()</tt>
 * <li> <tt>var_dep().size() + var_indep().size() == Gc.rows()</tt>
 * <li> <tt>equ_decomp().size() + equ_undecomp().size() == Gc.cols()</tt>
 * </ul>
 *
 * Note that the client should not rely on \c var_dep(), \c
 * var_indep(), \c equ_decomp(), or \c equ_undecomp() until after the
 * first call to \c update_basis().  This allows a
 * <tt>%BasisSystem</tt> object to adjust itself to accommodate the
 * input matrix \c Gc.
 *
 * A fully initialized <tt>%BasisSystem</tt> object will be setup to
 * work with specific types and sizes of input matrices \c Gc and \c
 * Gh.  Therefore, the client should be able to get accrate values
 * from \c var_dep(), \c var_indep(), \c equ_decomp(), or \c
 * equ_undecomp() even before the first call to \c update_basis().
 * The <tt>%BasisSystem</tt> object must therefore be initialized in
 * some way to accommodate input matrices \c Gc and \c Gh of a
 * specific dimension.
 *
 * Note that This interface is completely worthless unless
 * \c var_dep() returns some valid range (i.e. a basis matrix exists).
 * If <tt>var_dep().size() == 0</tt> then this is an indication that
 * \c this is uninitialzed and therefore only the factory methods can
 * be called!
 *
 * The method \c update_basis() is used by the client to update the
 * basis matrix \a C and perhaps the direct sensitivity matrix \a D
 * and it's auxillary projected sensistivity matrix \c GcUP
 * Strictly speaking, it would be possible to form the matrix
 * \a D externally through the <tt>MatrixNonsing</tt> interface
 * using the returned \a C and an \a N matrix object, but this may not
 * take advantage of any special application specific tricks that can
 * be used to form \a D.  Note that this interface does not return a
 * nonbasis matrix object for \a N.  However, this matrix object will
 * be needed for an implicit \a D matrix object that the client will
 * undoubtably want to create.  Creating such a matrix object is
 * simple given the method <tt>MatrixOp::sub_view()</tt>.  The
 * following code example shows how to create a matrix object for \a N
 * (given the matrix \c Gc input to <tt>bs.update_basis(Gc,...)</tt> and \c bs):
 \code
Teuchos::RCP<const MatrixOp>
create_N(
    const AbstractLinAlgPack::MatrixOp       &Gc
    ,const AbstractLinAlgPack::BasisSystem   &bs
    )
{
    namespace mmp = MemMngPack;
  return Teuchos::rcp(
        new MatrixOpSubView(
            Gc.sub_view(bs.var_indep(),bs.equ_decomp()), BLAS_Cpp::trans
            )
        );
}
 \endcode
 * Given the nonbasis matrix object for \a N returned by the above function, this matrix object could be used
 * to form an explicit \a D matrix object (but perhaps not very efficiently) or be used to implicitly implement
 * matrix vector products with \a D as:
 \verbatim

 op(D)*v = op(-inv(C)*N)*v = -inv(C)*(N*v) or -N'*(inv(C')*v)
 \endverbatim
 *
 * The client can also form matrices of the form <tt>S = I + D'*D</tt> as follows:
 \code
 Teuchos::RCP<MatrixSymOpNonsing>
     S = basis_sys.factory_S()->create();
 Teuchos::dyn_cast<MatrixSymInitDiag>(*S).init_identity(D.space_rows());
 syrk(D,BLAS_Cpp::trans,1.0,1.0,S.get();
 \endcode
 * The matrix <tt>S</tt> must then be fully initialized and ready to go.
 *
 * <b>Subclass developer's notes:</b>
 *
 * The default implementation (of the methods that have default implementations) assume
 * that there are no undecomposed equality constriants.
 * 
 * ToDo: Finish documentation!
 *
 */
class BasisSystem {
public:

  /** @name Public types */
  //@{

  /** \brief . */
  typedef Teuchos::RCP<
    const Teuchos::AbstractFactory<MatrixOpNonsing> >    mat_nonsing_fcty_ptr_t;
  /** \brief . */
  typedef Teuchos::RCP<
    const Teuchos::AbstractFactory<MatrixOp> >           mat_fcty_ptr_t;
  /** \brief . */
  typedef Teuchos::RCP<
    const Teuchos::AbstractFactory<MatrixSymOp> >        mat_sym_fcty_ptr_t;
  /** \brief . */
  typedef Teuchos::RCP<
    const Teuchos::AbstractFactory<MatrixSymOpNonsing> > mat_sym_nonsing_fcty_ptr_t;
  /** \brief . */
  class SingularBasis : public std::runtime_error
  {public: SingularBasis(const std::string& what_arg) : std::runtime_error(what_arg) {}};
  /** \brief . */
  enum EMatRelations { MATRICES_INDEP_IMPS, MATRICES_ALLOW_DEP_IMPS };

  //@}

  /** \brief Required constructor (calls <tt>initialize()</tt>).
   */
  BasisSystem(
    const mat_sym_fcty_ptr_t             &factory_transDtD
    ,const mat_sym_nonsing_fcty_ptr_t    &factory_S
    );

  /** \brief Initialize the factory objects for the special matrices for <tt>D'*D</tt> and <tt>S = I + D'*D</tt>.
   *
   * Postconditions:<ul>
   * <li>this->factory_transDtD().get() == factory_transDtD.get()</tt>
   * <li>this->factory_S().get() == factory_S.get()</tt>
   * </ul>
   */
  virtual void initialize(
    const mat_sym_fcty_ptr_t             &factory_transDtD
    ,const mat_sym_nonsing_fcty_ptr_t    &factory_S
    );

  /** \brief . */
  virtual ~BasisSystem() {}

  /** @name Matrix factories */
  //@{

  /** \brief Return a matrix factory object for basis <tt>C = [ Gc(var_dep,equ_decomp)';  Gh(var_dep,inequ_decomp)' ]</tt>.
   */
  virtual const mat_nonsing_fcty_ptr_t factory_C() const = 0;
  
  /** \brief Return a matrix factory object for sensitivity matrix <tt>D = -inv(C)*N</tt>.
   *
   * It is allowed for this to return \c NULL in which case \c update_basis() will not
   * accept a \c D matrix to be computed.
   */
  virtual const mat_fcty_ptr_t factory_D() const = 0;

  /** \brief Return a matrix factory object for auxiliary sensitivity matrix <tt>GcUP = Gc(var_indep,equ_undecomp)' + Gc(var_dep,equ_undecomp)'*D</tt>.
   *
   * It is allowed for this to return \c NULL in which case \c update_basis() will not
   * accept a \c GcUP matrix to be computed.
   */
  virtual const mat_fcty_ptr_t factory_GcUP() const;

  /** \brief Returns a matrix factory for the result of <tt>J = D'*D</tt>
   * 
   * The resulting matrix is symmetric but is assumed to be singular.
   *
   * Postconditions:<ul>
   * <li> The function <tt>AbstractLinAlgPack::syrk(D,trans,alpha,beta,return->create().get())</tt>
   *      must not throw an exception once <tt>D</tt> has been initialized by <tt>this</tt>.
   * </ul>
   */
  virtual const mat_sym_fcty_ptr_t factory_transDtD() const;
  
  /** \brief Returns a matrix factory for the result of <tt>S = I + D'*D</tt>
   * 
   * The resulting matrix is symmetric and is guarrenteed to be nonsingular.
   *
   * Postconditions:<ul>
   * <li><tt>dynamic_cast<MatrixSymInitDiag*>(return->create().get()) != NULL</tt>
   * </ul>
   */
  virtual const mat_sym_nonsing_fcty_ptr_t factory_S() const;
  
  //@}

  /** @name Return the ranges for variable and constraint partitioning */
  //@{

  /** \brief Range of dependent (basic) variables.
   *
   * If there are no dependent variables then <tt>return.size() == 0</tt>.
   * This would be a strange case where there was no basis matrix in which
   * case this whole interface would be worthless.  Therefore, to be useful
   * <tt>return.size() > 0</tt> must be true.
   *
   * If \c var_dep().size() returns 0, then this is an indication that
   * \c *this is uninitialized and only the factory methods can be
   * called.
   */
  virtual Range1D var_dep() const = 0;
  /** \brief Range of independnet (nonbasic) variables.
   *
   * It is possible that the basis matrix may take up all of the degrees of
   * freedom with <tt>var_dep().size() == Gc->rows()</tt>.  In this case, there
   * is no nonbasis matrix \a N and no direct sensitivity matrix \a D.
   * In this case <tt>return.size() == 0</tt>.  In the more general case
   * however, <tt>return.size() > 0</tt>.
   */
  virtual Range1D var_indep() const = 0;
  /** \brief Range of decomposed general equality constraints.
   *
   * If there are no decomposed general equality constriants then
   * <tt>return.size() == 0</tt>.  Otherwise, <tt>return.size() > 0</tt>.
   *
   * The default implementation return <tt>Range1D(1,this->var_dep().size())</tt>
   */
  virtual Range1D equ_decomp() const;
  /** \brief Range of undecomposed general equality constriants.
   *
   * If there are no undecomposed equality constriants then
   * <tt>return.size() == 0</tt>.  Otherwise, <tt>return.size() > 0</tt>.
   *
   * The default implementation return <tt>Range1D::Invalid</tt>
   */
  virtual Range1D equ_undecomp() const;

  //@}

  /** @name Update matrices */
  //@{

  /** \brief Update a basis and posssibly the direct sensitivity matrix for a 
   * set of Jacobian matrices.
   *
   * @param  Gc    [in] Jacobian of the equality constriants.
   * @param  C     [out] Basis matrix.  If <tt>C == NULL</tt> on input, then this
   *               quantity is not updated.  If <tt>C != NULL</tt> then this must
   *               have been created by <tt>this->factory_C()->create()</tt>.
   *               This basis matrix object must be independent of the input
   *               matrices \c Gc and/or \c Gh.  Therefore, it must be legal to
   *               destroy \c Gc and/or \c Gh without affecting the behavior of
   *               the basis matrix object \c C.
   * @param  D     [out] Direct sensitivity matrix <tt>D = -inv(C)*N</tt>.  If
   *               <tt>D == NULL</tt> on input then this quantity is not updated.
   *               If <tt>D != NULL</tt> then this must have been created by
   *               <tt>this->factory_D()->create()</tt>.  This matrix object
   *               is meaningless if <tt>this->var_indep() == Range1D::Invalid</tt>
   *               on return.
   *               This matrix object must be independent matrices \c Gc and/or \c Gh
   *               Therefore, it must be legal to
   *               destroy \c Gc and/or \c Gh without affecting the behavior of
   *               the direct sensitivity matrix object \c D.
   * @param  GcUP  [out] Auxiliary sensistivity matrix
   *               <tt>GcUP = Gc(var_indep,equ_undecomp)' + Gc(var_dep,equ_undecomp)'*D</tt>.
   *               If <tt>GcUP == NULL</tt> on input then this quantity is not updated.
   *               If <tt>GcUP != NULL</tt> then this must have been created by
   *               <tt>this->factory_GcUP()->create()</tt>.  This matrix object
   *               is meaningless if <tt>this->var_indep() == Range1D::Invalid</tt>
   *               on return.
   *               This matrix object must be independent of the matrices \c Gc and/or \c Gh
   *               and/or \c D.  Therefore, it must be legal to destroy \c Gc and/or \c Gh
   *               and/or \c D without affecting the behavior of the matrix object \c GcUP.
   * @param mat_rel
   *               [in] Determines if the matrix objects must be completely independent or not.
   *               <ul>
   *               <li> MATRICES_INDEP_IMPS: The matrix objects must have independent implementations (default).
   *               <li> MATRICES_ALLOW_DEP_IMPS: The matrix objects can have implementation dependencies.
   *               </ul>
   * @param  out   [in/out] If <tt>out!=NULL</tt>, then some information about the operations performed
   *               internally may be printed to \c *out.  The amount of this output should be
   *               very minimal and should not significantly increase with the size of the problem
   *               being solved.
   *
   * Preconditions:<ul>
   * <li> <tt>Gc != NULL || Gh != NULL</tt>
   * <li> [<tt>Gc != NULL && Gh != NULL</tt>]
   *      <tt>Gc->space_cols().is_compatible(Gh->space_cols()) == true</tt>
   * <li> [<tt>Gc != NULL</tt>] <tt>Gc->space_cols().sub_space(var_dep()).get() != NULL</tt>
   * <li> [<tt>Gc != NULL</tt>] <tt>Gc->space_cols().sub_space(var_indep()).get() != NULL</tt>
   * <li> [<tt>Gc != NULL</tt>] <tt>Gc->space_rows().sub_space(equ_decomp()).get() != NULL</tt>
   * <li> [<tt>Gc != NULL && equ_decomp().size() > 0 </tt>]
   *      <tt>Gc.space_rows().sub_space(equ_decomp()).get() != NULL</tt>
   * <li> [<tt>Gc != NULL && equ_undecomp().size() > 0 </tt>]
   *      <tt>Gc.space_rows().sub_space(equ_undecomp()).get() != NULL</tt>
   * <li> <tt>C != NULL || D != NULL || GcUP != NULL</tt>
   * </ul>
   *
   * Postconditions:<ul>
   * <li> <tt>this->var_dep() != Range1D::Invalid && !this->var_dep().full_range()</tt>
   * <li> [<tt>C != NULL && Gc != NULL && equ_decomp().size() > 0</tt>]
   *      <tt>C->space_cols().sub_space(equ_decomp())->is_compatible(Gc->space_rows().sub_space(equ_decomp()))
   *      && C->space_rows().is_compatible(Gc->space_cols().sub_space(var_dep()))</tt>
   * <li> [<tt>C != NULL && Gh != NULL && inequ_decomp().size() > 0</tt>]
   *      <tt>C->space_cols().sub_space(equ_decomp().size()+inequ_decomp())->is_compatible(Gh->space_rows().sub_space(inequ_decomp()))
   *      && C->space_rows().is_compatible(Gh->space_cols().sub_space(var_dep()))</tt>
   * <li> [<tt>D != NULL && Gc != NULL && var_indep().size() > 0 && equ_decomp().size() > 0</tt>]
   *      <tt>D->space_cols().sub_space(equ_decomp())->is_compatible(Gc->space_rows().sub_space(equ_decomp()))
   *      && D->space_rows().is_compatible(Gc->space_cols().sub_space(var_indep()))</tt>
   * <li> [<tt>D != NULL && Gh != NULL && var_indep().size() > 0 && inequ_decomp().size() > 0</tt>]
   *      <tt>D->space_cols().sub_space(equ_decomp().size()+inequ_decomp())->is_compatible(Gh->space_rows().sub_space(inequ_decomp()))
   *      && D->space_rows().is_compatible(Gh->space_cols().sub_space(var_indep()))</tt>
   * <li> [<tt>GcUP != NULL && var_indep().size() > 0 && equ_undecomp().size() > 0</tt>]
   *      <tt>GcUP->space_rows()->is_compatible(Gc->space_cols().sub_space(var_indep()))
   *      && GcUP->space_cols()->is_compatible(Gc->space_rows().sub_space(equ_undecomp()))</tt>
   * </ul>
   *
   * This method with throw a \c SingularBasis exception if the updated basis matrix \a C is too close
   * (as defined by the underlying implementation by some means) to being numerically singular.
   */
  virtual void update_basis(
    const MatrixOp          &Gc
    ,MatrixOpNonsing        *C
    ,MatrixOp               *D
    ,MatrixOp               *GcUP
    ,EMatRelations          mat_rel = MATRICES_INDEP_IMPS
    ,std::ostream           *out    = NULL
    ) const = 0;

  //@}

private:
  mat_sym_fcty_ptr_t             factory_transDtD_;
  mat_sym_nonsing_fcty_ptr_t     factory_S_;

  // not defined and not to be called
  BasisSystem();

}; // end class BasisSystem

}  // end namespace AbstractLinAlgPack

#endif // ABSTRACT_LIN_ALG_PACK_BASIS_SYSTEM_H