This file is indexed.

/usr/lib/perl5/TFBS/Matrix/PFM.pm is in libtfbs-perl 0.5.svn.20100421-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# TFBS module for TFBS::Matrix::PFM
#
# Copyright Boris Lenhard
# 
# You may distribute this module under the same terms as perl itself
#

# POD

=head1 NAME

TFBS::Matrix::PFM - class for raw position frequency matrix patterns


=head1 SYNOPSIS

=over 4

=item * creating a TFBS::Matrix::PFM object manually:


    my $matrixref = [ [ 12,  3,  0,  0,  4,  0 ],
		      [  0,  0,  0, 11,  7,  0 ],
		      [  0,  9, 12,  0,  0,  0 ],
		      [  0,  0,  0,  1,  1, 12 ]
		    ];	
    my $pfm = TFBS::Matrix::PFM->new(-matrix => $matrixref,
				     -name   => "MyProfile",
				     -ID     => "M0001"
				    );
    # or
 
    my $matrixstring =
        "12 3 0 0 4 0\n0 0 0 11 7 0\n0 9 12 0 0 0\n0 0 0 1 1 12";
 
    my $pfm = TFBS::Matrix::PFM->new(-matrixstring => $matrixstring,
				     -name   	   => "MyProfile",
				     -ID           => "M0001"
				    );
 
 
=item * retrieving a TFBS::Matix::PFM object from a database:

(See documentation of individual TFBS::DB::* modules to learn
how to connect to different types of pattern databases and 
retrieve TFBS::Matrix::* objects from them.)
    
    my $db_obj = TFBS::DB::JASPAR2->new
		    (-connect => ["dbi:mysql:JASPAR2:myhost",
				  "myusername", "mypassword"]);
    my $pfm = $db_obj->get_Matrix_by_ID("M0001", "PFM");
    # or
    my $pfm = $db_obj->get_Matrix_by_name("MyProfile", "PFM");


=item * retrieving list of individual TFBS::Matrix::PFM objects
from a TFBS::MatrixSet object

(See the L<TFBS::MatrixSet> to learn how to create 
objects for storage and manipulation of multiple matrices.)

    my @pfm_list = $matrixset->all_patterns(-sort_by=>"name");


=item * convert a raw frequency matrix to other matrix types:

    my $pwm = $pfm->to_PWM(); # convert to position weight matrix
    my $icm = $icm->to_ICM(); # convert to information con

=back        

=head1 DESCRIPTION

TFBS::Matrix::PFM is a class whose instances are objects representing
raw position frequency matrices (PFMs). A PFM is derived from N
nucleotide patterns of fixed size, e.g. the set of sequences

    AGGCCT
    AAGCCT
    AGGCAT
    AAGCCT
    AAGCCT
    AGGCAT
    AGGCCT
    AGGCAT
    AGGTTT
    AGGCAT
    AGGCCT
    AGGCCT


will give the matrix:

    A:[ 12  3  0  0  4  0 ]
    C:[  0  0  0 11  7  0 ]
    G:[  0  9 12  0  0  0 ]
    T:[  0  0  0  1  1 12 ]

which contains the count of each nucleotide at each position in the
sequence. (If you have a set of sequences as above and want to
create a TFBS::Matrix::PFM object out of them, have a look at
TFBS::PatternGen::SimplePFM module.)

PFMs are easily converted to other types of matrices, namely
information content matrices and position weight matrices. A
TFBS::Matrix::PFM object has the methods to_ICM and to_PWM which
do just that, returning a TFBS::Matrix::ICM and TFBS::Matrix::PWM
objects, respectively. 

=head1 FEEDBACK

Please send bug reports and other comments to the author.

=head1 AUTHOR - Boris Lenhard

Boris Lenhard E<lt>Boris.Lenhard@cgb.ki.seE<gt>

=head1 APPENDIX

The rest of the documentation details each of the object
methods. Internal methods are preceded with an underscore.

=cut


# The code begins HERE:

package TFBS::Matrix::PFM;

use vars '@ISA';
use PDL;
use strict;
use Bio::Root::Root;
use Bio::SeqIO;
use TFBS::Matrix;
use TFBS::Matrix::ICM;
use TFBS::Matrix::PWM;
use File::Temp qw/:POSIX/;
@ISA = qw(TFBS::Matrix Bio::Root::Root);

use constant EXACT_SCHNEIDER_MAX => 30;


#######################################################
# PUBLIC METHODS
#######################################################

=head2 new

 Title   : new
 Usage   : my $pfm = TFBS::Matrix::PFM->new(%args)
 Function: constructor for the TFBS::Matrix::PFM object
 Returns : a new TFBS::Matrix::PFM object
 Args    : # you must specify either one of the following three:
 
	   -matrix,      # reference to an array of arrays of integers
	      #or
	   -matrixstring,# a string containing four lines
	                 # of tab- or space-delimited integers
	      #or
	   -matrixfile,  # the name of a file containing four lines
	                 # of tab- or space-delimited integers
	   #######
 
           -name,        # string, OPTIONAL
           -ID,          # string, OPTIONAL
           -class,       # string, OPTIONAL
           -tags         # an array reference, OPTIONAL
Warnings  : Warns if the matrix provided has columns with different
            sums. Columns with different sums contradict the usual
	    origin of matrix data and, unless you are absolutely sure
	    that column sums _should_ be different, it would be wise to
	    check your matrices.

=cut

sub new  {
    my ($class, %args) = @_;
    my $matrix = TFBS::Matrix->new(%args, -matrixtype=>"PFM");
    my $self = bless $matrix, ref($class) || $class;
    $self->_check_column_sums();
    return $self;
}

=head2 column_sum

 Title   : column_sum
 Usage   : my $nr_sequences = $pfm->column_sum()
 Function: calculates the sum of elements of one column
	   (the first one by default) which normally equals the
           number of sequences used to derive the PFM. 
 Returns : the sum of elements of one column (an integer)
 Args    : columnn number (starting from 1), OPTIONAL - you DO NOT
           need to specify it unless you are dealing with a matrix

=cut

sub column_sum {
    my ($self, $column) = (@_,1);
    return $self->pdl_matrix->slice($column-1)->sum;
    
}

=head2 to_PWM

 Title   : to_PWM
 Usage   : my $pwm = $pfm->to_PWM()
 Function: converts a raw frequency matrix (a TFBS::Matrix::PFM object)
	   to position weight matrix. At present it assumes uniform
	   background distribution of nucleotide frequencies.
 Returns : a new TFBS::Matrix::PWM object
 Args    : none; in the future releases, it should be able to accept
	   a user defined background probability of the four
	   nucleotides

=cut

sub to_PWM  {
    my ($self, %args) = @_;
    my $bg = ($args{'-bg_probabilities' } || $self->{'bg_probabilities'});
    my $bg_pdl = 
	transpose pdl ($bg->{'A'}, $bg->{'C'}, $bg->{'G'}, $bg->{'T'});
    my $nseqs = $self->pdl_matrix->sum / $self->length;
    my $q_pdl = ($self->pdl_matrix +$bg_pdl*sqrt($nseqs))
		 / 
		($nseqs + sqrt($nseqs));
    my $pwm_pdl = log2(4*$q_pdl);

    my $PWM = TFBS::Matrix::PWM->new
	( (map {("-$_", $self->{$_}) } keys %$self),
          # do not want tags to point to the same arrayref as in $self:
	  -tags => \%{ $self->{'tags'}}, 
	  -bg_probabilities => \%{ $self->{'bg_probabilities'}}, 
	  -matrix    => $pwm_pdl
	);
    return $PWM;
    
}


=head2 to_ICM

 Title   : to_ICM
 Usage   : my $icm = $pfm->to_ICM()
 Function: converts a raw frequency matrix (a TFBS::Matrix::PFM object)
	   to information content matrix. At present it assumes uniform
	   background distribution of nucleotide frequencies.
 Returns : a new TFBS::Matrix::ICM object
 Args    : -small_sample_correction # undef (default), 'schneider' or 'pseudocounts'

How a PFM is converted to ICM:
 
For a PFM element PFM[i,k], the probability without
pseudocounts is estimated to be simply

  p[i,k] = PFM[i,k] / Z

where 
- Z equals the column sum of the matrix i.e. the number of motifs used
to construct the PFM. 
- i is the column index (position in the motif)
- k is the row index (a letter in the alphacer, here k is one of
(A,C,G,T)

Here is how one normally calculates the pseudocount-corrected positional
probability p'[i,j]:

  p'[i,k] = (PFM[i,k] + 0.25*sqrt(Z)) / (Z + sqrt(Z))

0.25 is for the flat distribution of nucleotides, and sqrt(Z) is the
recommended pseudocount weight. In the general case,

  p'[i,k] = (PFM[i,k] + q[k]*B) / (Z + B)

where q[k] is the background distribution of the letter (nucleotide) k,
and B an arbitrary pseudocount value or expression (for no pseudocounts
B=0).

For a given position i, the deviation from random distribution in bits
is calculated as (Baldi and Brunak eq. 1.9 (2ed) or 1.8 (1ed)):

- for an arbitrary alphabet of A letters:

  D[i] = log2(A) + sum_for_all_k(p[i,k]*log2(p[i,k])) 

- special case for nucleotides (A=4)

  D[i] = 2 + sum_for_all_k(p[i,k]*log2(p[i,k]))  

D[i] equals the information content of the position i in the motif. To
calculate the entire ICM, you have to calculate the contrubution of each
nucleotide at a position i to D[i], i.e.

ICM[i,k] = p'[i,k] * D[i]


=cut

sub to_ICM  {
    my ($self, %args) = @_;
    my $bg = ($args{'-bg_probabilities' } || $self->{'bg_probabilities'});



    # compute ICM
    
    my $bg_pdl = 
	transpose pdl ($bg->{'A'}, $bg->{'C'}, $bg->{'G'}, $bg->{'T'});
    my $Z_pdl = $self->pdl_matrix->xchg(0,1)->sumover;

    # pseudocount calculation 

    my $B = 0; 
    if (lc($args{'-small_sample_correction'} or "") eq "pseudocounts") {

	$B = sqrt($Z_pdl);
    }
    else {
	$B = 0;   	# do not add pseudocounts
    }

    
    my $p_pdl = ($self->pdl_matrix +$bg_pdl*$B)/ ($Z_pdl + $B);
    my $plog_pdl = $p_pdl*log2($p_pdl);
    $plog_pdl = $plog_pdl->badmask(0);
    my $D_pdl = 2 + $plog_pdl->xchg(0,1)->sumover;
    my $ic_pdl = $p_pdl * $D_pdl;


    # apply Schneider correction if requested

    if (lc($args{'-small_sample_correction'} or "") eq "schneider")  {
	my $columnsum_pdl = $ic_pdl->transpose->sumover;
	my $corrected_columnsum_pdl = 
	    $columnsum_pdl 
	    + _schneider_correction ($self->pdl_matrix, $bg_pdl);
	$ic_pdl *= $corrected_columnsum_pdl/$columnsum_pdl;
    }
 
    # construct and return an ICM object

    my $ICM = TFBS::Matrix::ICM->new
	( (map {("-$_" => $self->{$_})} keys %$self),
	  -tags => \%{ $self->{'tags'}}, 
	  -bg_probabilities => \%{ $self->{'bg_probabilities'}}, 
	  -matrix    => $ic_pdl
	);
    return $ICM;

}


=head2 draw_logo

 Title   : draw_logo
 Usage   : my $gd_image = $pfm->draw_logo()
 Function: draws a sequence logo; similar to the 
           method in TFBS::Matrix::ICM, but can automatically calculate
           error bars for drawing
 Returns : a GD image object (see documentation of GD module)
 Args    : many; PFM-specific options are:
           -small_sample_correction # One of 
                                    # "Schneider" (uses correction 
                                    #   described by Schneider et al.
                                    #   (Schneider t et al. (1986) J.Biol.Chem.
                                    # "pseudocounts" - standard pseudocount 
                                    #   correction,  more suitable for 
                                    #   PFMs with large r column sums
                                    # If the parameter is ommited, small
                                    # sample correction is not applied

           -draw_error_bars         # if true, adds error bars to each position
                                    # in the logo. To calculate the error bars,
                                    # it uses the -small_sample_connection
                                    # argument if explicitly set,  
                                    # or "Schneider" by default
For other args, see draw_logo entry in TFBS::Matrix::ICM documentation

=cut

sub draw_logo {
    my ($self, %args) = @_;
    if ($args{'-draw_error_bars'})  {
	$args{'-small_sample_correction'} ||= "Schneider"; # default Schneider

	my $pdl_no_correction = 
	    $self->to_ICM()
	    ->pdl_matrix->transpose->sumover;
	my $pdl_with_correction = 
	    $self->to_ICM(-small_sample_correction 
			  => $args{'-small_sample_correction'})
	    ->pdl_matrix->transpose->sumover;

	$args{'-error_bars'} = 
	    [list ($pdl_no_correction - $pdl_with_correction)];
	    
    }
    $self->to_ICM(%args)->draw_logo(%args);
}


=head2 add_PFM

 Title   : add_PFM
 Usage   : $pfm->add_PFM($another_pfm)
 Function: adds the values of $pnother_pfm matrix to $pfm
 Returns : reference to the updated $pfm object
 Args    : a TFBS::Matrix::PFM object

=cut


sub add_PFM  {
    my ($self, $pfm) = @_;
    $pfm->isa("TFBS::Matrix::PFM") 
	or $self->throw("Wrong or no argument passed to add_PFM");
    my $sum = $self->pdl_matrix + $pfm->pdl_matrix;
    $self->set_matrix($sum);
    return $self;
}



=head2 name

=head2 ID

=head2 class

=head2 matrix

=head2 length

=head2 revcom

=head2 rawprint

=head2 prettyprint

The above methods are common to all matrix objects. Please consult
L<TFBS::Matrix> to find out how to use them.

=cut

###############################################
# PRIVATE METHODS
###############################################

sub _check_column_sums  {
    my ($self) = @_;
    my $pdl = $self->pdl_matrix->sever();
    my $rowsums = $pdl->xchg(0,1)->sumover();
    #if ($rowsums->where($rowsums != $rowsums->slice(0))->getdim(0) > 0)  {
	#$self->warn("PFM for ".$self->{ID}." has unequal column sums");
    #}
}

sub DESTROY  {
    # does nothing
}

###############################################
# UTILITY FUNCTIONS
###############################################

sub log2 { log($_[0]) / log(2); }


sub _schneider_correction {
    my ($pdl, $bg_pdl) = @_;
    my $Hg = -sum ($bg_pdl*log2($bg_pdl));
    my (@Hnbs, %saved_Hnb);
    my $is_flat = _is_bg_flat(list $bg_pdl);
    
    my @factorials = (1);
    if (min($pdl->transpose->sumover) <= EXACT_SCHNEIDER_MAX) {
	foreach my $i (1..max($pdl->transpose->sumover)) {
	    $factorials[$i] =$factorials[$i-1] * $i;
	}
    }
    my @column_sums = list $pdl->transpose->sumover;
    foreach my $colsum (@column_sums)  {
	if (defined($saved_Hnb{$colsum})) {
	    push @Hnbs, $saved_Hnb{$colsum};
	}
	else  {
	    my $Hnb;
	    if ($colsum <= EXACT_SCHNEIDER_MAX)  {
		if ($is_flat)  {
		    $Hnb = _schneider_Hnb_precomputed($colsum);
		}
		else {
		    $Hnb = _schneider_Hnb_exact($colsum, $bg_pdl, 
						\@factorials);
		}
	    }
	    else {
		$Hnb = _schneider_Hnb_approx($colsum, $Hg);

	    }
	    $saved_Hnb{$colsum} = $Hnb;
	    push @Hnbs, $Hnb;
	}
    }
    return -$Hg + pdl(@Hnbs);
    
}


sub _schneider_Hnb_exact {
    my ($n, $bg_pdl, $rFactorial) = @_;
    
    my $is_flat = _is_bg_flat(list $bg_pdl);
    return 0 if $n==1;
#    my @fctrl = (1);
#    foreach my $i (1..max($pdl->transpose->sumover)) {
#	$rFactorial->[$i] =$rFactorial->[$i-1] * $i;
#    }
#    my @colsum = list $pdl->transpose->sumover;
    my ($na, $nc, $ng, $nt) = ($n, 0,0,0);
#    my $n = $colsum[0];
    my $E_Hnb=0;
    while (1) {
	my $ns_pdl = pdl [$na, $nc, $ng, $nt];
	my $Pnb = ($rFactorial->[$n]
		   /
		   ($rFactorial->[$na]
		    *$rFactorial->[$nc]
		    *$rFactorial->[$ng]
		    *$rFactorial->[$nt])
		   )*prod($bg_pdl->transpose**pdl($na, $nc, $ng, $nt));
	my $Hnb = -1 * sum(($ns_pdl/$n)*log2($ns_pdl/$n)->badmask(0));
	$E_Hnb += $Pnb*$Hnb;
	

	if ($nt) {
	    if    ($ng) { $ng--; $nt++, }
	    elsif ($nc) { $nc--; $ng = $nt+1; $nt = 0; }
	    elsif ($na) { $na--; $nc = $nt+1; $nt = 0; }
	    else        { last; }
	}
	else {
	    if    ($ng) { $ng--; $nt++, }
	    elsif ($nc) { $nc--; $ng++; }
	    else        { $na--; $nc++; $nt = 0; }
	}
    }
    return $E_Hnb;
}



sub _schneider_Hnb_approx  {
    my ($colsum,  $Hg) = @_;
    return $Hg -3/(2*log(2)*$colsum);
    
}



sub _schneider_Hnb_precomputed {
    my $i = shift;
    if ($i<1 or $i>30)  { 
	die "Precomputed params only available for colsums 1 to 30)";
    }
    my @precomputed = 
	(
	 0, # 1
	 0.75, # 2
	 1.11090234442608, # 3
	 1.32398964833609, # 4
	 1.46290503577084, # 5
	 1.55922640783176, # 6
	 1.62900374746751, # 7
	 1.68128673969433, # 8
	 1.7215504663901, # 9
	 1.75328193031842, # 10
	 1.77879136615189, # 11
	 1.79965855531179, # 12
	 1.81699248819687, # 13
	 1.8315892710679, # 14
	 1.84403166371213, # 15
	 1.85475371994775, # 16
	 1.86408383599326, # 17
	 1.87227404728809, # 18
	 1.87952034817826, # 19
	 1.88597702438913, # 20
	 1.89176691659196, # 21
	 1.89698887214968, # 22
	 1.90172322434865, # 23
	 1.90603586889234, # 24
	 1.90998133028897, # 25
	 1.91360509239859, # 26
	 1.91694538711761, # 27
	 1.92003457997914, # 28
	 1.92290025302018, # 29
	 1.92556605820924, # 30
	 );
    return $precomputed[$i-1];
}


sub _is_bg_flat {
    my @bg = @_;
    my $ref = shift;
    foreach my $other (@bg) {
	return 0 unless $ref==$other;
    }
    return 1;
}


1;