This file is indexed.

/usr/share/doc/libsuperlu-dev/tests/sp_zget07.c is in libsuperlu3-dev 3.0+20070106-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
 * -- SuperLU routine (version 3.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * October 15, 2003
 *
 */
#include <math.h>
#include "slu_zdefs.h"

int sp_zget07(trans_t trans, int n, int nrhs, SuperMatrix *A, doublecomplex *b, 
	      int ldb, doublecomplex *x, int ldx, doublecomplex *xact, 
              int ldxact, double *ferr, double *berr, double *reslts)
{
/*
    Purpose   
    =======   

    SP_ZGET07 tests the error bounds from iterative refinement for the   
    computed solution to a system of equations op(A)*X = B, where A is a 
    general n by n matrix and op(A) = A or A**T, depending on TRANS.
    
    RESLTS(1) = test of the error bound   
              = norm(X - XACT) / ( norm(X) * FERR )   
    A large value is returned if this ratio is not less than one.   

    RESLTS(2) = residual from the iterative refinement routine   
              = the maximum of BERR / ( (n+1)*EPS + (*) ), where   
                (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) 

    Arguments   
    =========   

    TRANS   (input) trans_t
            Specifies the form of the system of equations.   
            = NOTRANS:  A *x = b   
            = TRANS  :  A'*x = b, where A' is the transpose of A   
            = CONJ   :  A'*x = b, where A' is the transpose of A   

    N       (input) INT
            The number of rows of the matrices X and XACT.  N >= 0.   

    NRHS    (input) INT   
            The number of columns of the matrices X and XACT.  NRHS >= 0. 
  

    A       (input) SuperMatrix *, dimension (A->nrow, A->ncol)
            The original n by n matrix A.   

    B       (input) DOUBLE COMPLEX PRECISION array, dimension (LDB,NRHS)   
            The right hand side vectors for the system of linear   
            equations.   

    LDB     (input) INT   
            The leading dimension of the array B.  LDB >= max(1,N).   

    X       (input) DOUBLE COMPLEX PRECISION array, dimension (LDX,NRHS)   
            The computed solution vectors.  Each vector is stored as a   
            column of the matrix X.   

    LDX     (input) INT   
            The leading dimension of the array X.  LDX >= max(1,N).   

    XACT    (input) DOUBLE COMPLEX PRECISION array, dimension (LDX,NRHS)   
            The exact solution vectors.  Each vector is stored as a   
            column of the matrix XACT.   

    LDXACT  (input) INT   
            The leading dimension of the array XACT.  LDXACT >= max(1,N). 
  

    FERR    (input) DOUBLE COMPLEX PRECISION array, dimension (NRHS)   
            The estimated forward error bounds for each solution vector   
            X.  If XTRUE is the true solution, FERR bounds the magnitude 
            of the largest entry in (X - XTRUE) divided by the magnitude 
            of the largest entry in X.   

    BERR    (input) DOUBLE COMPLEX PRECISION array, dimension (NRHS)   
            The componentwise relative backward error of each solution   
            vector (i.e., the smallest relative change in any entry of A 
  
            or B that makes X an exact solution).   

    RESLTS  (output) DOUBLE PRECISION array, dimension (2)   
            The maximum over the NRHS solution vectors of the ratios:   
            RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )   
            RESLTS(2) = BERR / ( (n+1)*EPS + (*) )   

    ===================================================================== 
*/
    
    /* Table of constant values */
    int c__1 = 1;

    /* System generated locals */
    double d__1, d__2;
    double d__3, d__4;

    /* Local variables */
    double diff, axbi;
    int    imax, irow, n__1;
    int    i, j, k;
    double unfl, ovfl;
    double xnorm;
    double errbnd;
    int    notran;
    double eps, tmp;
    double *rwork;
    doublecomplex *Aval;
    NCformat *Astore;

    /* Function prototypes */
    extern int    lsame_(char *, char *);
    extern int    izamax_(int *, doublecomplex *, int *);
    extern double dlamch_(char *);

    /* Quick exit if N = 0 or NRHS = 0. */
    if ( n <= 0 || nrhs <= 0 ) {
	reslts[0] = 0.;
	reslts[1] = 0.;
	return 0;
    }

    eps = dlamch_("Epsilon");
    unfl = dlamch_("Safe minimum");
    ovfl   = 1. / unfl;
    notran = (trans == NOTRANS);

    rwork  = (double *) SUPERLU_MALLOC(n*sizeof(double));
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    Astore = A->Store;
    Aval   = (doublecomplex *) Astore->nzval;
    
    /* Test 1:  Compute the maximum of   
       norm(X - XACT) / ( norm(X) * FERR )   
       over all the vectors X and XACT using the infinity-norm. */

    errbnd = 0.;
    for (j = 0; j < nrhs; ++j) {
	n__1 = n;
	imax = izamax_(&n__1, &x[j*ldx], &c__1);
	d__1 = (d__2 = x[imax-1 + j*ldx].r, fabs(d__2)) + 
               (d__3 = x[imax-1 + j*ldx].i, fabs(d__3));
	xnorm = SUPERLU_MAX(d__1,unfl);
	diff = 0.;
	for (i = 0; i < n; ++i) {
	    d__1 = (d__2 = x[i+j*ldx].r - xact[i+j*ldxact].r, fabs(d__2)) +
                   (d__3 = x[i+j*ldx].i - xact[i+j*ldxact].i, fabs(d__3));
	    diff = SUPERLU_MAX(diff, d__1);
	}

	if (xnorm > 1.) {
	    goto L20;
	} else if (diff <= ovfl * xnorm) {
	    goto L20;
	} else {
	    errbnd = 1. / eps;
	    goto L30;
	}

L20:
#if 0	
	if (diff / xnorm <= ferr[j]) {
	    d__1 = diff / xnorm / ferr[j];
	    errbnd = SUPERLU_MAX(errbnd,d__1);
	} else {
	    errbnd = 1. / eps;
	}
#endif
	d__1 = diff / xnorm / ferr[j];
	errbnd = SUPERLU_MAX(errbnd,d__1);
	/*printf("Ferr: %f\n", errbnd);*/
L30:
	;
    }
    reslts[0] = errbnd;

    /* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where 
       (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) + abs(b))_i ) */

    for (k = 0; k < nrhs; ++k) {
	for (i = 0; i < n; ++i) 
            rwork[i] = (d__1 = b[i + k*ldb].r, fabs(d__1)) +
                       (d__2 = b[i + k*ldb].i, fabs(d__2));
	if ( notran ) {
	    for (j = 0; j < n; ++j) {
		tmp = (d__1 = x[j + k*ldx].r, fabs(d__1)) +
                      (d__2 = x[j + k*ldx].i, fabs(d__2));
		for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
		    d__1 = (d__2 = Aval[i].r, fabs(d__2)) +
                           (d__3 = Aval[i].i, fabs(d__3));
		    rwork[Astore->rowind[i]] += d__1 * tmp;
                }
	    }
	} else {
	    for (j = 0; j < n; ++j) {
		tmp = 0.;
		for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
		    irow = Astore->rowind[i];
		    d__1 = (d__2 = x[irow + k*ldx].r, fabs(d__2)) +
                           (d__3 = x[irow + k*ldx].i, fabs(d__3));
                    d__2 = (d__3 = Aval[i].r, fabs(d__3)) +
                           (d__4 = Aval[i].i, fabs(d__4));
		    tmp += d__2 * d__1;
		}
		rwork[j] += tmp;
	    }
	}

	axbi = rwork[0];
	for (i = 1; i < n; ++i) axbi = SUPERLU_MIN(axbi, rwork[i]);
	
	/* Computing MAX */
	d__1 = axbi, d__2 = (n + 1) * unfl;
	tmp = berr[k] / ((n + 1) * eps + (n + 1) * unfl / SUPERLU_MAX(d__1,d__2));
	
	if (k == 0) {
	    reslts[1] = tmp;
	} else {
	    reslts[1] = SUPERLU_MAX(reslts[1],tmp);
	}
    }

    SUPERLU_FREE(rwork);
    return 0;

} /* sp_zget07 */