This file is indexed.

/usr/share/doc/libsuperlu-dev/tests/sdrive.c is in libsuperlu3-dev 3.0+20070106-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * -- SuperLU routine (version 3.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * October 15, 2003
 *
 */
/*
 * File name:		sdrive.c
 * Purpose:             MAIN test program
 */
#include <string.h>
#include "slu_sdefs.h"

#define NTESTS    5      /* Number of test types */
#define NTYPES    11     /* Number of matrix types */
#define NTRAN     2    
#define THRESH    20.0
#define FMT1      "%10s:n=%d, test(%d)=%12.5g\n"
#define	FMT2      "%10s:fact=%4d, trans=%4d, equed=%c, n=%d, imat=%d, test(%d)=%12.5g\n"
#define FMT3      "%10s:info=%d, izero=%d, n=%d, nrhs=%d, imat=%d, nfail=%d\n"

static void
parse_command_line(int argc, char *argv[], char *matrix_type,
		   int *n, int *w, int *relax, int *nrhs, int *maxsuper,
		   int *rowblk, int *colblk, int *lwork, float *u);

main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * SDRIVE is the main test program for the FLOAT linear 
 * equation driver routines SGSSV and SGSSVX.
 * 
 * The program is invoked by a shell script file -- stest.csh.
 * The output from the tests are written into a file -- stest.out.
 *
 * =====================================================================
 */
    float         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    float  zero = 0.0;
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    float	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    float         *xact;
    float         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    float         anorm, cndnum, u, drop_tol = 0.;
    float         *Afull;
    float         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[3], sym[1], dist[1];

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
			      SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */ 
    extern int sp_sget01(int, int, SuperMatrix *, SuperMatrix *, 
		         SuperMatrix *, int *, float *);
    extern int sp_sget02(trans_t, int, int, int, SuperMatrix *, float *,
                         int, float *, int, float *resid);
    extern int sp_sget04(int, int, float *, int, 
                         float *, int, float rcond, float *resid);
    extern int sp_sget07(trans_t, int, int, SuperMatrix *, float *, int,
                         float *, int, float *, int, 
                         float *, float *, float *);
    extern int slatb4_(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int slatms_(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, float *, int *, float *, int *);
    extern int sp_sconvert(int, int, float *, int, int, int,
	                   float *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "SGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork, &u);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = SINGLE;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = floatCalloc(lda * n);
	sallocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    }

    sallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = floatMalloc(m * nrhs);
    bsav = floatMalloc(m * nrhs);
    solx = floatMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with SLATB4 and generate a test matrix
	       with SLATMS.  */
	    slatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    slatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_S, SLU_GE);
	sCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	sGenXtrue(n, nrhs, xact, ldx);
	
	StatInit(&stat);

	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 4;
	    else nfact = 1; /* Only test factored, pre-equilibrated matrix */

	    for (ifact = 0; ifact < nfact; ++ifact) {
		fact = facts[ifact];
		options.Fact = fact;

		for (equil = 0; equil < 2; ++equil) {
		    options.Equil = equil;
		    prefact   = ( options.Fact == FACTORED ||
				  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
		    nofact    = (options.Fact != FACTORED);  /* Not factored */

		    /* Restore the matrix A. */
		    sCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
                        if ( prefact ) continue;
		    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    sgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( lsame_(equed, "R") ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( lsame_(equed, "C") ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( lsame_(equed, "B") ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) { /* Need a factor for the first time */
			
		        /* Save Fact option. */
		        fact = options.Fact;
			options.Fact = DOFACT;

			/* Preorder the matrix, obtain the column etree. */
			sp_preorder(&options, &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			sgstrf(&options, &AC, drop_tol, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &stat, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			
		        /* Restore Fact option. */
			options.Fact = fact;
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			trans = transs[itran];
                        options.Trans = trans;

			/* Restore the matrix A. */
			sCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			sFillRHS(trans, nrhs, xact, ldx, &A, &B);
			sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test sgssv
			 *----------------*/
			if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    sgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "sgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                sp_sget01(m, n, &A, &L, &U, perm_r, &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    sp_sget02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "sgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing sgssv */
    
			/*----------------
			 * Test sgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = FACTORED and
			   equed = 'R', 'C', or 'B'.   */
			if ( options.Fact == FACTORED &&
			     (equil || iequed) && n > 0 ) {
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using sgssvx.      */
			sgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &mem_usage, &stat, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "sgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                sp_sget01(m, n, &A, &L, &U, perm_r, &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				sCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				sp_sget02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				sp_sget04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				sp_sget07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "sgssvx",
					       options.Fact, trans, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing sgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for equil ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif    

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("SGE", nfail, nrun, nerrs);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }
    StatFree(&stat);

    return 0;
}

/*  
 * Parse command line options to get relaxed snode size, panel size, etc.
 */
static void
parse_command_line(int argc, char *argv[], char *matrix_type,
		   int *n, int *w, int *relax, int *nrhs, int *maxsuper,
		   int *rowblk, int *colblk, int *lwork, float *u)
{
    int c;
    extern char *optarg;

    while ( (c = getopt(argc, argv, "ht:n:w:r:s:m:b:c:l:")) != EOF ) {
	switch (c) {
	  case 'h':
	    printf("Options:\n");
	    printf("\t-w <int> - panel size\n");
	    printf("\t-r <int> - granularity of relaxed supernodes\n");
	    exit(1);
	    break;
	  case 't': strcpy(matrix_type, optarg);
	            break;
	  case 'n': *n = atoi(optarg);
	            break;
	  case 'w': *w = atoi(optarg);
	            break;
	  case 'r': *relax = atoi(optarg); 
	            break;
	  case 's': *nrhs = atoi(optarg); 
	            break;
	  case 'm': *maxsuper = atoi(optarg); 
	            break;
	  case 'b': *rowblk = atoi(optarg); 
	            break;
	  case 'c': *colblk = atoi(optarg); 
	            break;
	  case 'l': *lwork = atoi(optarg); 
	            break;
	  case 'u': *u = atof(optarg); 
	            break;
  	}
    }
}