This file is indexed.

/usr/share/doc/libsuperlu-dev/tests/MATGEN/zsymv.c is in libsuperlu3-dev 3.0+20070106-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#include "f2c.h"

/* Subroutine */ int zsymv_(char *uplo, integer *n, doublecomplex *alpha, 
	doublecomplex *a, integer *lda, doublecomplex *x, integer *incx, 
	doublecomplex *beta, doublecomplex *y, integer *incy)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZSYMV  performs the matrix-vector  operation   

       y := alpha*A*x + beta*y,   

    where alpha and beta are scalars, x and y are n element vectors and   
    A is an n by n symmetric matrix.   

    Arguments   
    ==========   

    UPLO   - CHARACTER*1   
             On entry, UPLO specifies whether the upper or lower   
             triangular part of the array A is to be referenced as   
             follows:   

                UPLO = 'U' or 'u'   Only the upper triangular part of A   
                                    is to be referenced.   

                UPLO = 'L' or 'l'   Only the lower triangular part of A   
                                    is to be referenced.   

             Unchanged on exit.   

    N      - INTEGER   
             On entry, N specifies the order of the matrix A.   
             N must be at least zero.   
             Unchanged on exit.   

    ALPHA  - COMPLEX*16   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   

    A      - COMPLEX*16 array, dimension ( LDA, N )   
             Before entry, with  UPLO = 'U' or 'u', the leading n by n   
             upper triangular part of the array A must contain the upper 
  
             triangular part of the symmetric matrix and the strictly   
             lower triangular part of A is not referenced.   
             Before entry, with UPLO = 'L' or 'l', the leading n by n   
             lower triangular part of the array A must contain the lower 
  
             triangular part of the symmetric matrix and the strictly   
             upper triangular part of A is not referenced.   
             Unchanged on exit.   

    LDA    - INTEGER   
             On entry, LDA specifies the first dimension of A as declared 
  
             in the calling (sub) program. LDA must be at least   
             max( 1, N ).   
             Unchanged on exit.   

    X      - COMPLEX*16 array, dimension at least   
             ( 1 + ( N - 1 )*abs( INCX ) ).   
             Before entry, the incremented array X must contain the N-   
             element vector x.   
             Unchanged on exit.   

    INCX   - INTEGER   
             On entry, INCX specifies the increment for the elements of   
             X. INCX must not be zero.   
             Unchanged on exit.   

    BETA   - COMPLEX*16   
             On entry, BETA specifies the scalar beta. When BETA is   
             supplied as zero then Y need not be set on input.   
             Unchanged on exit.   

    Y      - COMPLEX*16 array, dimension at least   
             ( 1 + ( N - 1 )*abs( INCY ) ).   
             Before entry, the incremented array Y must contain the n   
             element vector y. On exit, Y is overwritten by the updated   
             vector y.   

    INCY   - INTEGER   
             On entry, INCY specifies the increment for the elements of   
             Y. INCY must not be zero.   
             Unchanged on exit.   

   ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    doublecomplex z__1, z__2, z__3, z__4;
    /* Local variables */
    static integer info;
    static doublecomplex temp1, temp2;
    static integer i, j;
    extern logical lsame_(char *, char *);
    static integer ix, iy, jx, jy, kx, ky;
    extern /* Subroutine */ int xerbla_(char *, integer *);


#define X(I) x[(I)-1]
#define Y(I) y[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*lda < max(1,*n)) {
	info = 5;
    } else if (*incx == 0) {
	info = 7;
    } else if (*incy == 0) {
	info = 10;
    }
    if (info != 0) {
	xerbla_("ZSYMV ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && 
	    beta->i == 0.)) {
	return 0;
    }

/*     Set up the start points in  X  and  Y. */

    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (*n - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (*n - 1) * *incy;
    }

/*     Start the operations. In this version the elements of A are   
       accessed sequentially with one pass through the triangular part   
       of A.   

       First form  y := beta*y. */

    if (beta->r != 1. || beta->i != 0.) {
	if (*incy == 1) {
	    if (beta->r == 0. && beta->i == 0.) {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    i__2 = i;
		    Y(i).r = 0., Y(i).i = 0.;
/* L10: */
		}
	    } else {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    i__2 = i;
		    i__3 = i;
		    z__1.r = beta->r * Y(i).r - beta->i * Y(i).i, 
			    z__1.i = beta->r * Y(i).i + beta->i * Y(i)
			    .r;
		    Y(i).r = z__1.r, Y(i).i = z__1.i;
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (beta->r == 0. && beta->i == 0.) {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    i__2 = iy;
		    Y(iy).r = 0., Y(iy).i = 0.;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    i__2 = iy;
		    i__3 = iy;
		    z__1.r = beta->r * Y(iy).r - beta->i * Y(iy).i, 
			    z__1.i = beta->r * Y(iy).i + beta->i * Y(iy)
			    .r;
		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (alpha->r == 0. && alpha->i == 0.) {
	return 0;
    }
    if (lsame_(uplo, "U")) {

/*        Form  y  when A is stored in upper triangle. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__2 = j;
		z__1.r = alpha->r * X(j).r - alpha->i * X(j).i, z__1.i =
			 alpha->r * X(j).i + alpha->i * X(j).r;
		temp1.r = z__1.r, temp1.i = z__1.i;
		temp2.r = 0., temp2.i = 0.;
		i__2 = j - 1;
		for (i = 1; i <= j-1; ++i) {
		    i__3 = i;
		    i__4 = i;
		    i__5 = i + j * a_dim1;
		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			    .r;
		    z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + z__2.i;
		    Y(i).r = z__1.r, Y(i).i = z__1.i;
		    i__3 = i + j * a_dim1;
		    i__4 = i;
		    z__2.r = A(i,j).r * X(i).r - A(i,j).i * X(i).i, 
			    z__2.i = A(i,j).r * X(i).i + A(i,j).i * X(
			    i).r;
		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		    temp2.r = z__1.r, temp2.i = z__1.i;
/* L50: */
		}
		i__2 = j;
		i__3 = j;
		i__4 = j + j * a_dim1;
		z__3.r = temp1.r * A(j,j).r - temp1.i * A(j,j).i, z__3.i = 
			temp1.r * A(j,j).i + temp1.i * A(j,j).r;
		z__2.r = Y(j).r + z__3.r, z__2.i = Y(j).i + z__3.i;
		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
		Y(j).r = z__1.r, Y(j).i = z__1.i;
/* L60: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__2 = jx;
		z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, z__1.i =
			 alpha->r * X(jx).i + alpha->i * X(jx).r;
		temp1.r = z__1.r, temp1.i = z__1.i;
		temp2.r = 0., temp2.i = 0.;
		ix = kx;
		iy = ky;
		i__2 = j - 1;
		for (i = 1; i <= j-1; ++i) {
		    i__3 = iy;
		    i__4 = iy;
		    i__5 = i + j * a_dim1;
		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			    .r;
		    z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + z__2.i;
		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		    i__3 = i + j * a_dim1;
		    i__4 = ix;
		    z__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(ix).i, 
			    z__2.i = A(i,j).r * X(ix).i + A(i,j).i * X(
			    ix).r;
		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		    temp2.r = z__1.r, temp2.i = z__1.i;
		    ix += *incx;
		    iy += *incy;
/* L70: */
		}
		i__2 = jy;
		i__3 = jy;
		i__4 = j + j * a_dim1;
		z__3.r = temp1.r * A(j,j).r - temp1.i * A(j,j).i, z__3.i = 
			temp1.r * A(j,j).i + temp1.i * A(j,j).r;
		z__2.r = Y(jy).r + z__3.r, z__2.i = Y(jy).i + z__3.i;
		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
		Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		jx += *incx;
		jy += *incy;
/* L80: */
	    }
	}
    } else {

/*        Form  y  when A is stored in lower triangle. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__2 = j;
		z__1.r = alpha->r * X(j).r - alpha->i * X(j).i, z__1.i =
			 alpha->r * X(j).i + alpha->i * X(j).r;
		temp1.r = z__1.r, temp1.i = z__1.i;
		temp2.r = 0., temp2.i = 0.;
		i__2 = j;
		i__3 = j;
		i__4 = j + j * a_dim1;
		z__2.r = temp1.r * A(j,j).r - temp1.i * A(j,j).i, z__2.i = 
			temp1.r * A(j,j).i + temp1.i * A(j,j).r;
		z__1.r = Y(j).r + z__2.r, z__1.i = Y(j).i + z__2.i;
		Y(j).r = z__1.r, Y(j).i = z__1.i;
		i__2 = *n;
		for (i = j + 1; i <= *n; ++i) {
		    i__3 = i;
		    i__4 = i;
		    i__5 = i + j * a_dim1;
		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			    .r;
		    z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + z__2.i;
		    Y(i).r = z__1.r, Y(i).i = z__1.i;
		    i__3 = i + j * a_dim1;
		    i__4 = i;
		    z__2.r = A(i,j).r * X(i).r - A(i,j).i * X(i).i, 
			    z__2.i = A(i,j).r * X(i).i + A(i,j).i * X(
			    i).r;
		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		    temp2.r = z__1.r, temp2.i = z__1.i;
/* L90: */
		}
		i__2 = j;
		i__3 = j;
		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		z__1.r = Y(j).r + z__2.r, z__1.i = Y(j).i + z__2.i;
		Y(j).r = z__1.r, Y(j).i = z__1.i;
/* L100: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__2 = jx;
		z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, z__1.i =
			 alpha->r * X(jx).i + alpha->i * X(jx).r;
		temp1.r = z__1.r, temp1.i = z__1.i;
		temp2.r = 0., temp2.i = 0.;
		i__2 = jy;
		i__3 = jy;
		i__4 = j + j * a_dim1;
		z__2.r = temp1.r * A(j,j).r - temp1.i * A(j,j).i, z__2.i = 
			temp1.r * A(j,j).i + temp1.i * A(j,j).r;
		z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;
		Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		ix = jx;
		iy = jy;
		i__2 = *n;
		for (i = j + 1; i <= *n; ++i) {
		    ix += *incx;
		    iy += *incy;
		    i__3 = iy;
		    i__4 = iy;
		    i__5 = i + j * a_dim1;
		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			    .r;
		    z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + z__2.i;
		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		    i__3 = i + j * a_dim1;
		    i__4 = ix;
		    z__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(ix).i, 
			    z__2.i = A(i,j).r * X(ix).i + A(i,j).i * X(
			    ix).r;
		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		    temp2.r = z__1.r, temp2.i = z__1.i;
/* L110: */
		}
		i__2 = jy;
		i__3 = jy;
		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = 
			alpha->r * temp2.i + alpha->i * temp2.r;
		z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;
		Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		jx += *incx;
		jy += *incy;
/* L120: */
	    }
	}
    }

    return 0;

/*     End of ZSYMV */

} /* zsymv_ */