This file is indexed.

/usr/share/doc/libsuperlu-dev/tests/MATGEN/slagge.c is in libsuperlu3-dev 3.0+20070106-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*  -- translated by f2c (version 19940927).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Table of constant values */

static integer c__3 = 3;
static integer c__1 = 1;
static real c_b11 = 1.f;
static real c_b13 = 0.f;

/* Subroutine */ int slagge_(integer *m, integer *n, integer *kl, integer *ku,
	 real *d, real *a, integer *lda, integer *iseed, real *work, integer *
	info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    real r__1;

    /* Builtin functions */
    double r_sign(real *, real *);

    /* Local variables */
    extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 
	    integer *, real *, integer *, real *, integer *);
    extern real snrm2_(integer *, real *, integer *);
    static integer i, j;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 
	    sgemv_(char *, integer *, integer *, real *, real *, integer *, 
	    real *, integer *, real *, real *, integer *);
    static real wa, wb, wn;
    extern /* Subroutine */ int xerbla_(char *, integer *), slarnv_(
	    integer *, integer *, integer *, real *);
    static real tau;


/*  -- LAPACK auxiliary test routine (version 2.0)   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    SLAGGE generates a real general m by n matrix A, by pre- and post-   
    multiplying a real diagonal matrix D with random orthogonal matrices: 
  
    A = U*D*V. The lower and upper bandwidths may then be reduced to   
    kl and ku by additional orthogonal transformations.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    KL      (input) INTEGER   
            The number of nonzero subdiagonals within the band of A.   
            0 <= KL <= M-1.   

    KU      (input) INTEGER   
            The number of nonzero superdiagonals within the band of A.   
            0 <= KU <= N-1.   

    D       (input) REAL array, dimension (min(M,N))   
            The diagonal elements of the diagonal matrix D.   

    A       (output) REAL array, dimension (LDA,N)   
            The generated m by n matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= M.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry, the seed of the random number generator; the array 
  
            elements must be between 0 and 4095, and ISEED(4) must be   
            odd.   
            On exit, the seed is updated.   

    WORK    (workspace) REAL array, dimension (M+N)   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


       Test the input arguments   

       Parameter adjustments */
    --d;
    a_dim1 = *lda;
    a_offset = a_dim1 + 1;
    a -= a_offset;
    --iseed;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0 || *kl > *m - 1) {
	*info = -3;
    } else if (*ku < 0 || *ku > *n - 1) {
	*info = -4;
    } else if (*lda < max(1,*m)) {
	*info = -7;
    }
    if (*info < 0) {
	i__1 = -(*info);
	xerbla_("SLAGGE", &i__1);
	return 0;
    }

/*     initialize A to diagonal matrix */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *m;
	for (i = 1; i <= i__2; ++i) {
	    a[i + j * a_dim1] = 0.f;
/* L10: */
	}
/* L20: */
    }
    i__1 = min(*m,*n);
    for (i = 1; i <= i__1; ++i) {
	a[i + i * a_dim1] = d[i];
/* L30: */
    }

/*     pre- and post-multiply A by random orthogonal matrices */

    for (i = min(*m,*n); i >= 1; --i) {
	if (i < *m) {

/*           generate random reflection */

	    i__1 = *m - i + 1;
	    slarnv_(&c__3, &iseed[1], &i__1, &work[1]);
	    i__1 = *m - i + 1;
	    wn = snrm2_(&i__1, &work[1], &c__1);
	    wa = r_sign(&wn, &work[1]);
	    if (wn == 0.f) {
		tau = 0.f;
	    } else {
		wb = work[1] + wa;
		i__1 = *m - i;
		r__1 = 1.f / wb;
		sscal_(&i__1, &r__1, &work[2], &c__1);
		work[1] = 1.f;
		tau = wb / wa;
	    }

/*           multiply A(i:m,i:n) by random reflection from the lef
t */

	    i__1 = *m - i + 1;
	    i__2 = *n - i + 1;
	    sgemv_("Transpose", &i__1, &i__2, &c_b11, &a[i + i * a_dim1], lda,
		     &work[1], &c__1, &c_b13, &work[*m + 1], &c__1);
	    i__1 = *m - i + 1;
	    i__2 = *n - i + 1;
	    r__1 = -(doublereal)tau;
	    sger_(&i__1, &i__2, &r__1, &work[1], &c__1, &work[*m + 1], &c__1, 
		    &a[i + i * a_dim1], lda);
	}
	if (i < *n) {

/*           generate random reflection */

	    i__1 = *n - i + 1;
	    slarnv_(&c__3, &iseed[1], &i__1, &work[1]);
	    i__1 = *n - i + 1;
	    wn = snrm2_(&i__1, &work[1], &c__1);
	    wa = r_sign(&wn, &work[1]);
	    if (wn == 0.f) {
		tau = 0.f;
	    } else {
		wb = work[1] + wa;
		i__1 = *n - i;
		r__1 = 1.f / wb;
		sscal_(&i__1, &r__1, &work[2], &c__1);
		work[1] = 1.f;
		tau = wb / wa;
	    }

/*           multiply A(i:m,i:n) by random reflection from the rig
ht */

	    i__1 = *m - i + 1;
	    i__2 = *n - i + 1;
	    sgemv_("No transpose", &i__1, &i__2, &c_b11, &a[i + i * a_dim1], 
		    lda, &work[1], &c__1, &c_b13, &work[*n + 1], &c__1);
	    i__1 = *m - i + 1;
	    i__2 = *n - i + 1;
	    r__1 = -(doublereal)tau;
	    sger_(&i__1, &i__2, &r__1, &work[*n + 1], &c__1, &work[1], &c__1, 
		    &a[i + i * a_dim1], lda);
	}
/* L40: */
    }

/*     Reduce number of subdiagonals to KL and number of superdiagonals   
       to KU   

   Computing MAX */
    i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;
    i__1 = max(i__2,i__3);
    for (i = 1; i <= i__1; ++i) {
	if (*kl <= *ku) {

/*           annihilate subdiagonal elements first (necessary if K
L = 0)   

   Computing MIN */
	    i__2 = *m - 1 - *kl;
	    if (i <= min(i__2,*n)) {

/*              generate reflection to annihilate A(kl+i+1:m,i
) */

		i__2 = *m - *kl - i + 1;
		wn = snrm2_(&i__2, &a[*kl + i + i * a_dim1], &c__1);
		wa = r_sign(&wn, &a[*kl + i + i * a_dim1]);
		if (wn == 0.f) {
		    tau = 0.f;
		} else {
		    wb = a[*kl + i + i * a_dim1] + wa;
		    i__2 = *m - *kl - i;
		    r__1 = 1.f / wb;
		    sscal_(&i__2, &r__1, &a[*kl + i + 1 + i * a_dim1], &c__1);
		    a[*kl + i + i * a_dim1] = 1.f;
		    tau = wb / wa;
		}

/*              apply reflection to A(kl+i:m,i+1:n) from the l
eft */

		i__2 = *m - *kl - i + 1;
		i__3 = *n - i;
		sgemv_("Transpose", &i__2, &i__3, &c_b11, &a[*kl + i + (i + 1)
			 * a_dim1], lda, &a[*kl + i + i * a_dim1], &c__1, &
			c_b13, &work[1], &c__1);
		i__2 = *m - *kl - i + 1;
		i__3 = *n - i;
		r__1 = -(doublereal)tau;
		sger_(&i__2, &i__3, &r__1, &a[*kl + i + i * a_dim1], &c__1, &
			work[1], &c__1, &a[*kl + i + (i + 1) * a_dim1], lda);
		a[*kl + i + i * a_dim1] = -(doublereal)wa;
	    }

/* Computing MIN */
	    i__2 = *n - 1 - *ku;
	    if (i <= min(i__2,*m)) {

/*              generate reflection to annihilate A(i,ku+i+1:n
) */

		i__2 = *n - *ku - i + 1;
		wn = snrm2_(&i__2, &a[i + (*ku + i) * a_dim1], lda);
		wa = r_sign(&wn, &a[i + (*ku + i) * a_dim1]);
		if (wn == 0.f) {
		    tau = 0.f;
		} else {
		    wb = a[i + (*ku + i) * a_dim1] + wa;
		    i__2 = *n - *ku - i;
		    r__1 = 1.f / wb;
		    sscal_(&i__2, &r__1, &a[i + (*ku + i + 1) * a_dim1], lda);
		    a[i + (*ku + i) * a_dim1] = 1.f;
		    tau = wb / wa;
		}

/*              apply reflection to A(i+1:m,ku+i:n) from the r
ight */

		i__2 = *m - i;
		i__3 = *n - *ku - i + 1;
		sgemv_("No transpose", &i__2, &i__3, &c_b11, &a[i + 1 + (*ku 
			+ i) * a_dim1], lda, &a[i + (*ku + i) * a_dim1], lda, 
			&c_b13, &work[1], &c__1);
		i__2 = *m - i;
		i__3 = *n - *ku - i + 1;
		r__1 = -(doublereal)tau;
		sger_(&i__2, &i__3, &r__1, &work[1], &c__1, &a[i + (*ku + i) *
			 a_dim1], lda, &a[i + 1 + (*ku + i) * a_dim1], lda);
		a[i + (*ku + i) * a_dim1] = -(doublereal)wa;
	    }
	} else {

/*           annihilate superdiagonal elements first (necessary if
   
             KU = 0)   

   Computing MIN */
	    i__2 = *n - 1 - *ku;
	    if (i <= min(i__2,*m)) {

/*              generate reflection to annihilate A(i,ku+i+1:n
) */

		i__2 = *n - *ku - i + 1;
		wn = snrm2_(&i__2, &a[i + (*ku + i) * a_dim1], lda);
		wa = r_sign(&wn, &a[i + (*ku + i) * a_dim1]);
		if (wn == 0.f) {
		    tau = 0.f;
		} else {
		    wb = a[i + (*ku + i) * a_dim1] + wa;
		    i__2 = *n - *ku - i;
		    r__1 = 1.f / wb;
		    sscal_(&i__2, &r__1, &a[i + (*ku + i + 1) * a_dim1], lda);
		    a[i + (*ku + i) * a_dim1] = 1.f;
		    tau = wb / wa;
		}

/*              apply reflection to A(i+1:m,ku+i:n) from the r
ight */

		i__2 = *m - i;
		i__3 = *n - *ku - i + 1;
		sgemv_("No transpose", &i__2, &i__3, &c_b11, &a[i + 1 + (*ku 
			+ i) * a_dim1], lda, &a[i + (*ku + i) * a_dim1], lda, 
			&c_b13, &work[1], &c__1);
		i__2 = *m - i;
		i__3 = *n - *ku - i + 1;
		r__1 = -(doublereal)tau;
		sger_(&i__2, &i__3, &r__1, &work[1], &c__1, &a[i + (*ku + i) *
			 a_dim1], lda, &a[i + 1 + (*ku + i) * a_dim1], lda);
		a[i + (*ku + i) * a_dim1] = -(doublereal)wa;
	    }

/* Computing MIN */
	    i__2 = *m - 1 - *kl;
	    if (i <= min(i__2,*n)) {

/*              generate reflection to annihilate A(kl+i+1:m,i
) */

		i__2 = *m - *kl - i + 1;
		wn = snrm2_(&i__2, &a[*kl + i + i * a_dim1], &c__1);
		wa = r_sign(&wn, &a[*kl + i + i * a_dim1]);
		if (wn == 0.f) {
		    tau = 0.f;
		} else {
		    wb = a[*kl + i + i * a_dim1] + wa;
		    i__2 = *m - *kl - i;
		    r__1 = 1.f / wb;
		    sscal_(&i__2, &r__1, &a[*kl + i + 1 + i * a_dim1], &c__1);
		    a[*kl + i + i * a_dim1] = 1.f;
		    tau = wb / wa;
		}

/*              apply reflection to A(kl+i:m,i+1:n) from the l
eft */

		i__2 = *m - *kl - i + 1;
		i__3 = *n - i;
		sgemv_("Transpose", &i__2, &i__3, &c_b11, &a[*kl + i + (i + 1)
			 * a_dim1], lda, &a[*kl + i + i * a_dim1], &c__1, &
			c_b13, &work[1], &c__1);
		i__2 = *m - *kl - i + 1;
		i__3 = *n - i;
		r__1 = -(doublereal)tau;
		sger_(&i__2, &i__3, &r__1, &a[*kl + i + i * a_dim1], &c__1, &
			work[1], &c__1, &a[*kl + i + (i + 1) * a_dim1], lda);
		a[*kl + i + i * a_dim1] = -(doublereal)wa;
	    }
	}

	i__2 = *m;
	for (j = *kl + i + 1; j <= i__2; ++j) {
	    a[j + i * a_dim1] = 0.f;
/* L50: */
	}

	i__2 = *n;
	for (j = *ku + i + 1; j <= i__2; ++j) {
	    a[i + j * a_dim1] = 0.f;
/* L60: */
	}
/* L70: */
    }
    return 0;

/*     End of SLAGGE */

} /* slagge_ */