This file is indexed.

/usr/share/doc/libsuperlu-dev/tests/MATGEN/dlatmr.c is in libsuperlu3-dev 3.0+20070106-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
/*  -- translated by f2c (version 19940927).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Table of constant values */

static integer c__0 = 0;
static integer c__1 = 1;

/* Subroutine */ int dlatmr_(integer *m, integer *n, char *dist, integer *
	iseed, char *sym, doublereal *d, integer *mode, doublereal *cond, 
	doublereal *dmax__, char *rsign, char *grade, doublereal *dl, integer 
	*model, doublereal *condl, doublereal *dr, integer *moder, doublereal 
	*condr, char *pivtng, integer *ipivot, integer *kl, integer *ku, 
	doublereal *sparse, doublereal *anorm, char *pack, doublereal *a, 
	integer *lda, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1, d__2, d__3;

    /* Local variables */
    static integer isub, jsub;
    static doublereal temp;
    static integer isym, i, j, k;
    static doublereal alpha;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static integer ipack;
    extern logical lsame_(char *, char *);
    static doublereal tempa[1];
    static integer iisub, idist, jjsub, mnmin;
    static logical dzero;
    static integer mnsub;
    static doublereal onorm;
    static integer mxsub, npvts;
    extern /* Subroutine */ int dlatm1_(integer *, doublereal *, integer *, 
	    integer *, integer *, doublereal *, integer *, integer *);
    extern doublereal dlatm2_(integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, doublereal *, doublereal *, integer *, integer *, doublereal *)
	    , dlatm3_(integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *, integer *, 
	    doublereal *), dlangb_(char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *), dlange_(char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *);
    static integer igrade;
    extern doublereal dlansb_(char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *);
    static logical fulbnd;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static logical badpvt;
    extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
	    doublereal *), dlansy_(char *, char *, integer *, 
	    doublereal *, integer *, doublereal *);
    static integer irsign, ipvtng, kll, kuu;


/*  -- LAPACK test routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

       DLATMR generates random matrices of various types for testing   
       LAPACK programs.   

       DLATMR operates by applying the following sequence of   
       operations:   

         Generate a matrix A with random entries of distribution DIST   
            which is symmetric if SYM='S', and nonsymmetric   
            if SYM='N'.   

         Set the diagonal to D, where D may be input or   
            computed according to MODE, COND, DMAX and RSIGN   
            as described below.   

         Grade the matrix, if desired, from the left and/or right   
            as specified by GRADE. The inputs DL, MODEL, CONDL, DR,   
            MODER and CONDR also determine the grading as described   
            below.   

         Permute, if desired, the rows and/or columns as specified by   
            PIVTNG and IPIVOT.   

         Set random entries to zero, if desired, to get a random sparse   
            matrix as specified by SPARSE.   

         Make A a band matrix, if desired, by zeroing out the matrix   
            outside a band of lower bandwidth KL and upper bandwidth KU. 
  

         Scale A, if desired, to have maximum entry ANORM.   

         Pack the matrix if desired. Options specified by PACK are:   
            no packing   
            zero out upper half (if symmetric)   
            zero out lower half (if symmetric)   
            store the upper half columnwise (if symmetric or   
                square upper triangular)   
            store the lower half columnwise (if symmetric or   
                square lower triangular)   
                same as upper half rowwise if symmetric   
            store the lower triangle in banded format (if symmetric)   
            store the upper triangle in banded format (if symmetric)   
            store the entire matrix in banded format   

       Note: If two calls to DLATMR differ only in the PACK parameter,   
             they will generate mathematically equivalent matrices.   

             If two calls to DLATMR both have full bandwidth (KL = M-1   
             and KU = N-1), and differ only in the PIVTNG and PACK   
             parameters, then the matrices generated will differ only   
             in the order of the rows and/or columns, and otherwise   
             contain the same data. This consistency cannot be and   
             is not maintained with less than full bandwidth.   

    Arguments   
    =========   

    M      - INTEGER   
             Number of rows of A. Not modified.   

    N      - INTEGER   
             Number of columns of A. Not modified.   

    DIST   - CHARACTER*1   
             On entry, DIST specifies the type of distribution to be used 
  
             to generate a random matrix .   
             'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )   
             'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )   
             'N' => NORMAL( 0, 1 )   ( 'N' for normal )   
             Not modified.   

    ISEED  - INTEGER array, dimension (4)   
             On entry ISEED specifies the seed of the random number   
             generator. They should lie between 0 and 4095 inclusive,   
             and ISEED(4) should be odd. The random number generator   
             uses a linear congruential sequence limited to small   
             integers, and so should produce machine independent   
             random numbers. The values of ISEED are changed on   
             exit, and can be used in the next call to DLATMR   
             to continue the same random number sequence.   
             Changed on exit.   

    SYM    - CHARACTER*1   
             If SYM='S' or 'H', generated matrix is symmetric.   
             If SYM='N', generated matrix is nonsymmetric.   
             Not modified.   

    D      - DOUBLE PRECISION array, dimension (min(M,N))   
             On entry this array specifies the diagonal entries   
             of the diagonal of A.  D may either be specified   
             on entry, or set according to MODE and COND as described   
             below. May be changed on exit if MODE is nonzero.   

    MODE   - INTEGER   
             On entry describes how D is to be used:   
             MODE = 0 means use D as input   
             MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND   
             MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND   
             MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))   
             MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)   
             MODE = 5 sets D to random numbers in the range   
                      ( 1/COND , 1 ) such that their logarithms   
                      are uniformly distributed.   
             MODE = 6 set D to random numbers from same distribution   
                      as the rest of the matrix.   
             MODE < 0 has the same meaning as ABS(MODE), except that   
                the order of the elements of D is reversed.   
             Thus if MODE is positive, D has entries ranging from   
                1 to 1/COND, if negative, from 1/COND to 1,   
             Not modified.   

    COND   - DOUBLE PRECISION   
             On entry, used as described under MODE above.   
             If used, it must be >= 1. Not modified.   

    DMAX   - DOUBLE PRECISION   
             If MODE neither -6, 0 nor 6, the diagonal is scaled by   
             DMAX / max(abs(D(i))), so that maximum absolute entry   
             of diagonal is abs(DMAX). If DMAX is negative (or zero),   
             diagonal will be scaled by a negative number (or zero).   

    RSIGN  - CHARACTER*1   
             If MODE neither -6, 0 nor 6, specifies sign of diagonal   
             as follows:   
             'T' => diagonal entries are multiplied by 1 or -1   
                    with probability .5   
             'F' => diagonal unchanged   
             Not modified.   

    GRADE  - CHARACTER*1   
             Specifies grading of matrix as follows:   
             'N'  => no grading   
             'L'  => matrix premultiplied by diag( DL )   
                     (only if matrix nonsymmetric)   
             'R'  => matrix postmultiplied by diag( DR )   
                     (only if matrix nonsymmetric)   
             'B'  => matrix premultiplied by diag( DL ) and   
                           postmultiplied by diag( DR )   
                     (only if matrix nonsymmetric)   
             'S' or 'H'  => matrix premultiplied by diag( DL ) and   
                            postmultiplied by diag( DL )   
                            ('S' for symmetric, or 'H' for Hermitian)   
             'E'  => matrix premultiplied by diag( DL ) and   
                           postmultiplied by inv( diag( DL ) )   
                           ( 'E' for eigenvalue invariance)   
                     (only if matrix nonsymmetric)   
                     Note: if GRADE='E', then M must equal N.   
             Not modified.   

    DL     - DOUBLE PRECISION array, dimension (M)   
             If MODEL=0, then on entry this array specifies the diagonal 
  
             entries of a diagonal matrix used as described under GRADE   
             above. If MODEL is not zero, then DL will be set according   
             to MODEL and CONDL, analogous to the way D is set according 
  
             to MODE and COND (except there is no DMAX parameter for DL). 
  
             If GRADE='E', then DL cannot have zero entries.   
             Not referenced if GRADE = 'N' or 'R'. Changed on exit.   

    MODEL  - INTEGER   
             This specifies how the diagonal array DL is to be computed, 
  
             just as MODE specifies how D is to be computed.   
             Not modified.   

    CONDL  - DOUBLE PRECISION   
             When MODEL is not zero, this specifies the condition number 
  
             of the computed DL.  Not modified.   

    DR     - DOUBLE PRECISION array, dimension (N)   
             If MODER=0, then on entry this array specifies the diagonal 
  
             entries of a diagonal matrix used as described under GRADE   
             above. If MODER is not zero, then DR will be set according   
             to MODER and CONDR, analogous to the way D is set according 
  
             to MODE and COND (except there is no DMAX parameter for DR). 
  
             Not referenced if GRADE = 'N', 'L', 'H', 'S' or 'E'.   
             Changed on exit.   

    MODER  - INTEGER   
             This specifies how the diagonal array DR is to be computed, 
  
             just as MODE specifies how D is to be computed.   
             Not modified.   

    CONDR  - DOUBLE PRECISION   
             When MODER is not zero, this specifies the condition number 
  
             of the computed DR.  Not modified.   

    PIVTNG - CHARACTER*1   
             On entry specifies pivoting permutations as follows:   
             'N' or ' ' => none.   
             'L' => left or row pivoting (matrix must be nonsymmetric).   
             'R' => right or column pivoting (matrix must be   
                    nonsymmetric).   
             'B' or 'F' => both or full pivoting, i.e., on both sides.   
                           In this case, M must equal N   

             If two calls to DLATMR both have full bandwidth (KL = M-1   
             and KU = N-1), and differ only in the PIVTNG and PACK   
             parameters, then the matrices generated will differ only   
             in the order of the rows and/or columns, and otherwise   
             contain the same data. This consistency cannot be   
             maintained with less than full bandwidth.   

    IPIVOT - INTEGER array, dimension (N or M)   
             This array specifies the permutation used.  After the   
             basic matrix is generated, the rows, columns, or both   
             are permuted.   If, say, row pivoting is selected, DLATMR   
             starts with the *last* row and interchanges the M-th and   
             IPIVOT(M)-th rows, then moves to the next-to-last row,   
             interchanging the (M-1)-th and the IPIVOT(M-1)-th rows,   
             and so on.  In terms of "2-cycles", the permutation is   
             (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M))   
             where the rightmost cycle is applied first.  This is the   
             *inverse* of the effect of pivoting in LINPACK.  The idea   
             is that factoring (with pivoting) an identity matrix   
             which has been inverse-pivoted in this way should   
             result in a pivot vector identical to IPIVOT.   
             Not referenced if PIVTNG = 'N'. Not modified.   

    SPARSE - DOUBLE PRECISION   
             On entry specifies the sparsity of the matrix if a sparse   
             matrix is to be generated. SPARSE should lie between   
             0 and 1. To generate a sparse matrix, for each matrix entry 
  
             a uniform ( 0, 1 ) random number x is generated and   
             compared to SPARSE; if x is larger the matrix entry   
             is unchanged and if x is smaller the entry is set   
             to zero. Thus on the average a fraction SPARSE of the   
             entries will be set to zero.   
             Not modified.   

    KL     - INTEGER   
             On entry specifies the lower bandwidth of the  matrix. For   
             example, KL=0 implies upper triangular, KL=1 implies upper   
             Hessenberg, and KL at least M-1 implies the matrix is not   
             banded. Must equal KU if matrix is symmetric.   
             Not modified.   

    KU     - INTEGER   
             On entry specifies the upper bandwidth of the  matrix. For   
             example, KU=0 implies lower triangular, KU=1 implies lower   
             Hessenberg, and KU at least N-1 implies the matrix is not   
             banded. Must equal KL if matrix is symmetric.   
             Not modified.   

    ANORM  - DOUBLE PRECISION   
             On entry specifies maximum entry of output matrix   
             (output matrix will by multiplied by a constant so that   
             its largest absolute entry equal ANORM)   
             if ANORM is nonnegative. If ANORM is negative no scaling   
             is done. Not modified.   

    PACK   - CHARACTER*1   
             On entry specifies packing of matrix as follows:   
             'N' => no packing   
             'U' => zero out all subdiagonal entries (if symmetric)   
             'L' => zero out all superdiagonal entries (if symmetric)   
             'C' => store the upper triangle columnwise   
                    (only if matrix symmetric or square upper triangular) 
  
             'R' => store the lower triangle columnwise   
                    (only if matrix symmetric or square lower triangular) 
  
                    (same as upper half rowwise if symmetric)   
             'B' => store the lower triangle in band storage scheme   
                    (only if matrix symmetric)   
             'Q' => store the upper triangle in band storage scheme   
                    (only if matrix symmetric)   
             'Z' => store the entire matrix in band storage scheme   
                        (pivoting can be provided for by using this   
                        option to store A in the trailing rows of   
                        the allocated storage)   

             Using these options, the various LAPACK packed and banded   
             storage schemes can be obtained:   
             GB               - use 'Z'   
             PB, SB or TB     - use 'B' or 'Q'   
             PP, SP or TP     - use 'C' or 'R'   

             If two calls to DLATMR differ only in the PACK parameter,   
             they will generate mathematically equivalent matrices.   
             Not modified.   

    A      - DOUBLE PRECISION array, dimension (LDA,N)   
             On exit A is the desired test matrix. Only those   
             entries of A which are significant on output   
             will be referenced (even if A is in packed or band   
             storage format). The 'unoccupied corners' of A in   
             band format will be zeroed out.   

    LDA    - INTEGER   
             on entry LDA specifies the first dimension of A as   
             declared in the calling program.   
             If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ). 
  
             If PACK='C' or 'R', LDA must be at least 1.   
             If PACK='B', or 'Q', LDA must be MIN ( KU+1, N )   
             If PACK='Z', LDA must be at least KUU+KLL+1, where   
             KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 )   
             Not modified.   

    IWORK  - INTEGER array, dimension ( N or M)   
             Workspace. Not referenced if PIVTNG = 'N'. Changed on exit. 
  

    INFO   - INTEGER   
             Error parameter on exit:   
               0 => normal return   
              -1 => M negative or unequal to N and SYM='S' or 'H'   
              -2 => N negative   
              -3 => DIST illegal string   
              -5 => SYM illegal string   
              -7 => MODE not in range -6 to 6   
              -8 => COND less than 1.0, and MODE neither -6, 0 nor 6   
             -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string   
             -11 => GRADE illegal string, or GRADE='E' and   
                    M not equal to N, or GRADE='L', 'R', 'B' or 'E' and   
                    SYM = 'S' or 'H'   
             -12 => GRADE = 'E' and DL contains zero   
             -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H', 
  
                    'S' or 'E'   
             -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E', 
  
                    and MODEL neither -6, 0 nor 6   
             -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B'   
             -17 => CONDR less than 1.0, GRADE='R' or 'B', and   
                    MODER neither -6, 0 nor 6   
             -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and   
                    M not equal to N, or PIVTNG='L' or 'R' and SYM='S'   
                    or 'H'   
             -19 => IPIVOT contains out of range number and   
                    PIVTNG not equal to 'N'   
             -20 => KL negative   
             -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL 
  
             -22 => SPARSE not in range 0. to 1.   
             -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q'   
                    and SYM='N', or PACK='C' and SYM='N' and either KL   
                    not equal to 0 or N not equal to M, or PACK='R' and   
                    SYM='N', and either KU not equal to 0 or N not equal 
  
                    to M   
             -26 => LDA too small   
               1 => Error return from DLATM1 (computing D)   
               2 => Cannot scale diagonal to DMAX (max. entry is 0)   
               3 => Error return from DLATM1 (computing DL)   
               4 => Error return from DLATM1 (computing DR)   
               5 => ANORM is positive, but matrix constructed prior to   
                    attempting to scale it to have norm ANORM, is zero   

    ===================================================================== 
  


       1)      Decode and Test the input parameters.   
               Initialize flags & seed.   

       Parameter adjustments */
    --iseed;
    --d;
    --dl;
    --dr;
    --ipivot;
    a_dim1 = *lda;
    a_offset = a_dim1 + 1;
    a -= a_offset;
    --iwork;

    /* Function Body */
    *info = 0;

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Decode DIST */

    if (lsame_(dist, "U")) {
	idist = 1;
    } else if (lsame_(dist, "S")) {
	idist = 2;
    } else if (lsame_(dist, "N")) {
	idist = 3;
    } else {
	idist = -1;
    }

/*     Decode SYM */

    if (lsame_(sym, "S")) {
	isym = 0;
    } else if (lsame_(sym, "N")) {
	isym = 1;
    } else if (lsame_(sym, "H")) {
	isym = 0;
    } else {
	isym = -1;
    }

/*     Decode RSIGN */

    if (lsame_(rsign, "F")) {
	irsign = 0;
    } else if (lsame_(rsign, "T")) {
	irsign = 1;
    } else {
	irsign = -1;
    }

/*     Decode PIVTNG */

    if (lsame_(pivtng, "N")) {
	ipvtng = 0;
    } else if (lsame_(pivtng, " ")) {
	ipvtng = 0;
    } else if (lsame_(pivtng, "L")) {
	ipvtng = 1;
	npvts = *m;
    } else if (lsame_(pivtng, "R")) {
	ipvtng = 2;
	npvts = *n;
    } else if (lsame_(pivtng, "B")) {
	ipvtng = 3;
	npvts = min(*n,*m);
    } else if (lsame_(pivtng, "F")) {
	ipvtng = 3;
	npvts = min(*n,*m);
    } else {
	ipvtng = -1;
    }

/*     Decode GRADE */

    if (lsame_(grade, "N")) {
	igrade = 0;
    } else if (lsame_(grade, "L")) {
	igrade = 1;
    } else if (lsame_(grade, "R")) {
	igrade = 2;
    } else if (lsame_(grade, "B")) {
	igrade = 3;
    } else if (lsame_(grade, "E")) {
	igrade = 4;
    } else if (lsame_(grade, "H") || lsame_(grade, "S")) {
	igrade = 5;
    } else {
	igrade = -1;
    }

/*     Decode PACK */

    if (lsame_(pack, "N")) {
	ipack = 0;
    } else if (lsame_(pack, "U")) {
	ipack = 1;
    } else if (lsame_(pack, "L")) {
	ipack = 2;
    } else if (lsame_(pack, "C")) {
	ipack = 3;
    } else if (lsame_(pack, "R")) {
	ipack = 4;
    } else if (lsame_(pack, "B")) {
	ipack = 5;
    } else if (lsame_(pack, "Q")) {
	ipack = 6;
    } else if (lsame_(pack, "Z")) {
	ipack = 7;
    } else {
	ipack = -1;
    }

/*     Set certain internal parameters */

    mnmin = min(*m,*n);
/* Computing MIN */
    i__1 = *kl, i__2 = *m - 1;
    kll = min(i__1,i__2);
/* Computing MIN */
    i__1 = *ku, i__2 = *n - 1;
    kuu = min(i__1,i__2);

/*     If inv(DL) is used, check to see if DL has a zero entry. */

    dzero = FALSE_;
    if (igrade == 4 && *model == 0) {
	i__1 = *m;
	for (i = 1; i <= i__1; ++i) {
	    if (dl[i] == 0.) {
		dzero = TRUE_;
	    }
/* L10: */
	}
    }

/*     Check values in IPIVOT */

    badpvt = FALSE_;
    if (ipvtng > 0) {
	i__1 = npvts;
	for (j = 1; j <= i__1; ++j) {
	    if (ipivot[j] <= 0 || ipivot[j] > npvts) {
		badpvt = TRUE_;
	    }
/* L20: */
	}
    }

/*     Set INFO if an error */

    if (*m < 0) {
	*info = -1;
    } else if (*m != *n && isym == 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (idist == -1) {
	*info = -3;
    } else if (isym == -1) {
	*info = -5;
    } else if (*mode < -6 || *mode > 6) {
	*info = -7;
    } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) {
	*info = -8;
    } else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
	*info = -10;
    } else if (igrade == -1 || igrade == 4 && *m != *n || igrade >= 1 && 
	    igrade <= 4 && isym == 0) {
	*info = -11;
    } else if (igrade == 4 && dzero) {
	*info = -12;
    } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5) && (
	    *model < -6 || *model > 6)) {
	*info = -13;
    } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5) && (
	    *model != -6 && *model != 0 && *model != 6) && *condl < 1.) {
	*info = -14;
    } else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
	*info = -16;
    } else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
	     *moder != 6) && *condr < 1.) {
	*info = -17;
    } else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 || 
	    ipvtng == 2) && isym == 0) {
	*info = -18;
    } else if (ipvtng != 0 && badpvt) {
	*info = -19;
    } else if (*kl < 0) {
	*info = -20;
    } else if (*ku < 0 || isym == 0 && *kl != *ku) {
	*info = -21;
    } else if (*sparse < 0. || *sparse > 1.) {
	*info = -22;
    } else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 || 
	    ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0 
	    || *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
	     {
	*info = -24;
    } else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < max(1,*m) ||
	     (ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
	     6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLATMR", &i__1);
	return 0;
    }

/*     Decide if we can pivot consistently */

    fulbnd = FALSE_;
    if (kuu == *n - 1 && kll == *m - 1) {
	fulbnd = TRUE_;
    }

/*     Initialize random number generator */

    for (i = 1; i <= 4; ++i) {
	iseed[i] = (i__1 = iseed[i], abs(i__1)) % 4096;
/* L30: */
    }

    iseed[4] = (iseed[4] / 2 << 1) + 1;

/*     2)      Set up D, DL, and DR, if indicated.   

               Compute D according to COND and MODE */

    dlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d[1], &mnmin, info);
    if (*info != 0) {
	*info = 1;
	return 0;
    }
    if (*mode != 0 && *mode != -6 && *mode != 6) {

/*        Scale by DMAX */

	temp = abs(d[1]);
	i__1 = mnmin;
	for (i = 2; i <= i__1; ++i) {
/* Computing MAX */
	    d__2 = temp, d__3 = (d__1 = d[i], abs(d__1));
	    temp = max(d__2,d__3);
/* L40: */
	}
	if (temp == 0. && *dmax__ != 0.) {
	    *info = 2;
	    return 0;
	}
	if (temp != 0.) {
	    alpha = *dmax__ / temp;
	} else {
	    alpha = 1.;
	}
	i__1 = mnmin;
	for (i = 1; i <= i__1; ++i) {
	    d[i] = alpha * d[i];
/* L50: */
	}

    }

/*     Compute DL if grading set */

    if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5) {
	dlatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
	if (*info != 0) {
	    *info = 3;
	    return 0;
	}
    }

/*     Compute DR if grading set */

    if (igrade == 2 || igrade == 3) {
	dlatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
	if (*info != 0) {
	    *info = 4;
	    return 0;
	}
    }

/*     3)     Generate IWORK if pivoting */

    if (ipvtng > 0) {
	i__1 = npvts;
	for (i = 1; i <= i__1; ++i) {
	    iwork[i] = i;
/* L60: */
	}
	if (fulbnd) {
	    i__1 = npvts;
	    for (i = 1; i <= i__1; ++i) {
		k = ipivot[i];
		j = iwork[i];
		iwork[i] = iwork[k];
		iwork[k] = j;
/* L70: */
	    }
	} else {
	    for (i = npvts; i >= 1; --i) {
		k = ipivot[i];
		j = iwork[i];
		iwork[i] = iwork[k];
		iwork[k] = j;
/* L80: */
	    }
	}
    }

/*     4)      Generate matrices for each kind of PACKing   
               Always sweep matrix columnwise (if symmetric, upper   
               half only) so that matrix generated does not depend   
               on PACK */

    if (fulbnd) {

/*        Use DLATM3 so matrices generated with differing PIVOTing onl
y   
          differ only in the order of their rows and/or columns. */

	if (ipack == 0) {
	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i = 1; i <= i__2; ++i) {
			temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
			a[isub + jsub * a_dim1] = temp;
			a[jsub + isub * a_dim1] = temp;
/* L90: */
		    }
/* L100: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i = 1; i <= i__2; ++i) {
			temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
			a[isub + jsub * a_dim1] = temp;
/* L110: */
		    }
/* L120: */
		}
	    }

	} else if (ipack == 1) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
			     &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);
		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    a[mnsub + mxsub * a_dim1] = temp;
		    if (mnsub != mxsub) {
			a[mxsub + mnsub * a_dim1] = 0.;
		    }
/* L130: */
		}
/* L140: */
	    }

	} else if (ipack == 2) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
			     &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);
		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    a[mxsub + mnsub * a_dim1] = temp;
		    if (mnsub != mxsub) {
			a[mnsub + mxsub * a_dim1] = 0.;
		    }
/* L150: */
		}
/* L160: */
	    }

	} else if (ipack == 3) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
			     &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);

/*                 Compute K = location of (ISUB,JSUB) ent
ry in packed   
                   array */

		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    k = mxsub * (mxsub - 1) / 2 + mnsub;

/*                 Convert K to (IISUB,JJSUB) location */

		    jjsub = (k - 1) / *lda + 1;
		    iisub = k - *lda * (jjsub - 1);

		    a[iisub + jjsub * a_dim1] = temp;
/* L170: */
		}
/* L180: */
	    }

	} else if (ipack == 4) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
			     &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);

/*                 Compute K = location of (I,J) entry in 
packed array */

		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    if (mnsub == 1) {
			k = mxsub;
		    } else {
			k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n - 
				mnsub + 2) / 2 + mxsub - mnsub + 1;
		    }

/*                 Convert K to (IISUB,JJSUB) location */

		    jjsub = (k - 1) / *lda + 1;
		    iisub = k - *lda * (jjsub - 1);

		    a[iisub + jjsub * a_dim1] = temp;
/* L190: */
		}
/* L200: */
	    }

	} else if (ipack == 5) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = j - kuu; i <= i__2; ++i) {
		    if (i < 1) {
			a[j - i + 1 + (i + *n) * a_dim1] = 0.;
		    } else {
			temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
			mnsub = min(isub,jsub);
			mxsub = max(isub,jsub);
			a[mxsub - mnsub + 1 + mnsub * a_dim1] = temp;
		    }
/* L210: */
		}
/* L220: */
	    }

	} else if (ipack == 6) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = j - kuu; i <= i__2; ++i) {
		    temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &idist,
			     &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);
		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    a[mnsub - mxsub + kuu + 1 + mxsub * a_dim1] = temp;
/* L230: */
		}
/* L240: */
	    }

	} else if (ipack == 7) {

	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i = j - kuu; i <= i__2; ++i) {
			temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
			mnsub = min(isub,jsub);
			mxsub = max(isub,jsub);
			a[mnsub - mxsub + kuu + 1 + mxsub * a_dim1] = temp;
			if (i < 1) {
			    a[j - i + 1 + kuu + (i + *n) * a_dim1] = 0.;
			}
			if (i >= 1 && mnsub != mxsub) {
			    a[mxsub - mnsub + 1 + kuu + mnsub * a_dim1] = 
				    temp;
			}
/* L250: */
		    }
/* L260: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j + kll;
		    for (i = j - kuu; i <= i__2; ++i) {
			temp = dlatm3_(m, n, &i, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
			a[isub - jsub + kuu + 1 + jsub * a_dim1] = temp;
/* L270: */
		    }
/* L280: */
		}
	    }

	}

    } else {

/*        Use DLATM2 */

	if (ipack == 0) {
	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i = 1; i <= i__2; ++i) {
			a[i + j * a_dim1] = dlatm2_(m, n, &i, &j, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
			a[j + i * a_dim1] = a[i + j * a_dim1];
/* L290: */
		    }
/* L300: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i = 1; i <= i__2; ++i) {
			a[i + j * a_dim1] = dlatm2_(m, n, &i, &j, kl, ku, &
				idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[
				1], &ipvtng, &iwork[1], sparse);
/* L310: */
		    }
/* L320: */
		}
	    }

	} else if (ipack == 1) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    a[i + j * a_dim1] = dlatm2_(m, n, &i, &j, kl, ku, &idist, 
			    &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);
		    if (i != j) {
			a[j + i * a_dim1] = 0.;
		    }
/* L330: */
		}
/* L340: */
	    }

	} else if (ipack == 2) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    a[j + i * a_dim1] = dlatm2_(m, n, &i, &j, kl, ku, &idist, 
			    &iseed[1], &d[1], &igrade, &dl[1], &dr[1], &
			    ipvtng, &iwork[1], sparse);
		    if (i != j) {
			a[i + j * a_dim1] = 0.;
		    }
/* L350: */
		}
/* L360: */
	    }

	} else if (ipack == 3) {

	    isub = 0;
	    jsub = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = 1; i <= i__2; ++i) {
		    ++isub;
		    if (isub > *lda) {
			isub = 1;
			++jsub;
		    }
		    a[isub + jsub * a_dim1] = dlatm2_(m, n, &i, &j, kl, ku, &
			    idist, &iseed[1], &d[1], &igrade, &dl[1], &dr[1], 
			    &ipvtng, &iwork[1], sparse);
/* L370: */
		}
/* L380: */
	    }

	} else if (ipack == 4) {

	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i = 1; i <= i__2; ++i) {

/*                    Compute K = location of (I,J) en
try in packed array */

			if (i == 1) {
			    k = j;
			} else {
			    k = *n * (*n + 1) / 2 - (*n - i + 1) * (*n - i + 
				    2) / 2 + j - i + 1;
			}

/*                    Convert K to (ISUB,JSUB) locatio
n */

			jsub = (k - 1) / *lda + 1;
			isub = k - *lda * (jsub - 1);

			a[isub + jsub * a_dim1] = dlatm2_(m, n, &i, &j, kl, 
				ku, &idist, &iseed[1], &d[1], &igrade, &dl[1],
				 &dr[1], &ipvtng, &iwork[1], sparse);
/* L390: */
		    }
/* L400: */
		}
	    } else {
		isub = 0;
		jsub = 1;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i = j; i <= i__2; ++i) {
			++isub;
			if (isub > *lda) {
			    isub = 1;
			    ++jsub;
			}
			a[isub + jsub * a_dim1] = dlatm2_(m, n, &i, &j, kl, 
				ku, &idist, &iseed[1], &d[1], &igrade, &dl[1],
				 &dr[1], &ipvtng, &iwork[1], sparse);
/* L410: */
		    }
/* L420: */
		}
	    }

	} else if (ipack == 5) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = j - kuu; i <= i__2; ++i) {
		    if (i < 1) {
			a[j - i + 1 + (i + *n) * a_dim1] = 0.;
		    } else {
			a[j - i + 1 + i * a_dim1] = dlatm2_(m, n, &i, &j, kl, 
				ku, &idist, &iseed[1], &d[1], &igrade, &dl[1],
				 &dr[1], &ipvtng, &iwork[1], sparse);
		    }
/* L430: */
		}
/* L440: */
	    }

	} else if (ipack == 6) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i = j - kuu; i <= i__2; ++i) {
		    a[i - j + kuu + 1 + j * a_dim1] = dlatm2_(m, n, &i, &j, 
			    kl, ku, &idist, &iseed[1], &d[1], &igrade, &dl[1],
			     &dr[1], &ipvtng, &iwork[1], sparse);
/* L450: */
		}
/* L460: */
	    }

	} else if (ipack == 7) {

	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i = j - kuu; i <= i__2; ++i) {
			a[i - j + kuu + 1 + j * a_dim1] = dlatm2_(m, n, &i, &
				j, kl, ku, &idist, &iseed[1], &d[1], &igrade, 
				&dl[1], &dr[1], &ipvtng, &iwork[1], sparse);
			if (i < 1) {
			    a[j - i + 1 + kuu + (i + *n) * a_dim1] = 0.;
			}
			if (i >= 1 && i != j) {
			    a[j - i + 1 + kuu + i * a_dim1] = a[i - j + kuu + 
				    1 + j * a_dim1];
			}
/* L470: */
		    }
/* L480: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j + kll;
		    for (i = j - kuu; i <= i__2; ++i) {
			a[i - j + kuu + 1 + j * a_dim1] = dlatm2_(m, n, &i, &
				j, kl, ku, &idist, &iseed[1], &d[1], &igrade, 
				&dl[1], &dr[1], &ipvtng, &iwork[1], sparse);
/* L490: */
		    }
/* L500: */
		}
	    }

	}

    }

/*     5)      Scaling the norm */

    if (ipack == 0) {
	onorm = dlange_("M", m, n, &a[a_offset], lda, tempa);
    } else if (ipack == 1) {
	onorm = dlansy_("M", "U", n, &a[a_offset], lda, tempa);
    } else if (ipack == 2) {
	onorm = dlansy_("M", "L", n, &a[a_offset], lda, tempa);
    } else if (ipack == 3) {
	onorm = dlansp_("M", "U", n, &a[a_offset], tempa);
    } else if (ipack == 4) {
	onorm = dlansp_("M", "L", n, &a[a_offset], tempa);
    } else if (ipack == 5) {
	onorm = dlansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
    } else if (ipack == 6) {
	onorm = dlansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
    } else if (ipack == 7) {
	onorm = dlangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
    }

    if (*anorm >= 0.) {

	if (*anorm > 0. && onorm == 0.) {

/*           Desired scaling impossible */

	    *info = 5;
	    return 0;

	} else if (*anorm > 1. && onorm < 1. || *anorm < 1. && onorm > 1.) {

/*           Scale carefully to avoid over / underflow */

	    if (ipack <= 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    d__1 = 1. / onorm;
		    dscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
		    dscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
/* L510: */
		}

	    } else if (ipack == 3 || ipack == 4) {

		i__1 = *n * (*n + 1) / 2;
		d__1 = 1. / onorm;
		dscal_(&i__1, &d__1, &a[a_offset], &c__1);
		i__1 = *n * (*n + 1) / 2;
		dscal_(&i__1, anorm, &a[a_offset], &c__1);

	    } else if (ipack >= 5) {

		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = kll + kuu + 1;
		    d__1 = 1. / onorm;
		    dscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
		    i__2 = kll + kuu + 1;
		    dscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
/* L520: */
		}

	    }

	} else {

/*           Scale straightforwardly */

	    if (ipack <= 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    d__1 = *anorm / onorm;
		    dscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
/* L530: */
		}

	    } else if (ipack == 3 || ipack == 4) {

		i__1 = *n * (*n + 1) / 2;
		d__1 = *anorm / onorm;
		dscal_(&i__1, &d__1, &a[a_offset], &c__1);

	    } else if (ipack >= 5) {

		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = kll + kuu + 1;
		    d__1 = *anorm / onorm;
		    dscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
/* L540: */
		}
	    }

	}

    }

/*     End of DLATMR */

    return 0;
} /* dlatmr_ */