This file is indexed.

/usr/include/sofa/gpu/cuda/CudaLCP.inl is in libsofa1-dev 1.0~beta4-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
int CudaLCP_MultVector_ResSize(unsigned int dim) {
	return (dim+BSIZE-1)/BSIZE;
}

int CudaNLCP_MultVector_ResSize(unsigned int dim) {
	return (dim+MBSIZE-1)/MBSIZE;
}

///////////////////////////////////////1er version

void CudaLCP_MultVectorf(int dim,int index, const void * m,const void * f,void * r) {
	dim3 threads(BSIZE,1);
	dim3 grid((dim+BSIZE-1)/BSIZE,1);

	CudaLCP_MultVector_kernel<float><<< grid, threads, threads.x*sizeof(float) >>>(dim, index, (const float*)m, (const float*)f, (float*)r, BSIZE/2);
}
void CudaLCP_MultVectord(int dim,int index, const void * m,const void * f,void * r) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid((dim+BSIZE-1)/BSIZE,1);

	CudaLCP_MultVector_kernel<double><<< grid, threads, threads.x*sizeof(double) >>>(dim, index, (const double*)m, (const double*)f, (double*)r, BSIZE/2);
#endif
}

void CudaLCP_ComputeErrorf(int compteur2,int sizeTmp, const void * tmp, const void * M,const void * q,void * f,void * error) {
	dim3 threads(sizeTmp,1);
	dim3 grid(1,1);
	int offset;
	if (sizeTmp==1) offset = 0;
	else {
		offset = 1;
		while (offset*2 < sizeTmp)	offset *= 2;
	}

	CudaLCP_ComputeError_kernel<float><<< grid, threads, threads.x*sizeof(float) >>>(compteur2,(const float*)tmp, (const float*)M,(const float*)q, (float*)f,(float*)error,offset);
}
void CudaLCP_ComputeErrord(int compteur2,int sizeTmp, const void * tmp, const void * M,const void * q,void * f,void * error) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(sizeTmp,1);
	dim3 grid(1,1);
	int offset;
	if (sizeTmp==1) offset = 0;
	else {
		offset = 1;
		while (offset*2 < sizeTmp)	offset *= 2;
	}

	CudaLCP_ComputeError_kernel<double><<< grid, threads, threads.x*sizeof(double) >>>(compteur2,(const double*)tmp, (const double*)M,(const double*)q, (double*)f,(double*)error,offset);
#endif
}

//////////////////////////////2em version

/*
for (int i=0;i<dim;i++) {
	cuda_res[i] = cuda_q[i];
	for (int j=0;j<dim;j++) {
		if (j>i) cuda_res[i] += cuda_M[i][j] * cuda_f[j];
}
}
*/
void CudaLCP_MultIndepf(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
	dim3 threads(BSIZE,1);
	dim3 grid((dim+BSIZE-1)/BSIZE,dim);

	CudaLCP_MultIndep_kernel<float><<< grid, threads,0>>>(dim, (const float*)m,pM,(const float*)f,(float*)tmp,pTmp,BSIZE/2);
}
void CudaLCP_MultIndepd(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid((dim+BSIZE-1)/BSIZE,dim);

	CudaLCP_MultIndep_kernel<double><<< grid, threads,0>>>(dim, (const double*)m,pM,(const double*)f,(double*)tmp,pTmp,BSIZE/2);
#endif
}

/*
for (int j=0;j<dim;j++) {
	cuda_res[j] = cuda_q[i];
	for (int i=0;i<tmpsize;i++) {
		cuda_res[j] += cuda_tmp[i][j];
}
}
*/
void CudaLCP_AddIndepf(int dim,int tmpsize,const void * tmp,int pTmp,void * res) {
	dim3 threads(tmpsize,1);
	dim3 grid(dim,1);

	CudaLCP_AddIndep_kernel<float><<< grid, threads,threads.x*sizeof(float)>>>(tmpsize,(const float*)tmp,pTmp,(float*)res);
}
void CudaLCP_AddIndepd(int dim,int tmpsize,const void * tmp,int pTmp,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(tmpsize,1);
	dim3 grid(dim,1);

	CudaLCP_AddIndep_kernel<double><<< grid, threads,threads.x*sizeof(double)>>>(tmpsize,(const double*)tmp,pTmp,(double*)res);
#endif
}

void CudaLCP_AddIndepAndUpdatef(int dim,int tmpsize,const void * m,const void * q,const void * tmp,int pTmp,void * f,void * res,void * err) {
	dim3 threads(tmpsize,1);
	dim3 grid(dim,1);

	CudaLCP_AddIndepAndUpdate_kernel<float><<< grid, threads,threads.x*sizeof(float)>>>(dim,tmpsize,(const float*)m,(const float*)q,(const float*)tmp,pTmp,(float*)f,(float*)res,(float*)err,tmpsize);
}
void CudaLCP_AddIndepAndUpdated(int dim,int tmpsize,const void * m,const void * q,const void * tmp,int pTmp,void * f,void * res,void * err) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(tmpsize,1);
	dim3 grid(dim,1);

	CudaLCP_AddIndepAndUpdate_kernel<double><<< grid, threads,threads.x*sizeof(double)>>>(dim,tmpsize,(const double*)m,(const double*)q,(const double*)tmp,pTmp,(double*)f,(double*)res,(double*)err,tmpsize);
#endif
}

/*
float f_1 = cuda_f[compteur2];
if (cuda_res[compteur2]<0) cuda_f[compteur2] = -cuda_res[compteur2]/cuda_M[compteur2][compteur2];
else cuda_f[compteur2]=0.0;
cuda_err[0] += fabs(cuda_M[compteur2][compteur2] * (cuda_f[compteur2] - f_1));
cuda_err[1] = f_1;

for (int compteur3=0;compteur3<dim;compteur3++) {
	if (compteur3!=compteur2) cuda_res[compteur3] += cuda_M[compteur3][compteur2] * (cuda_f[compteur2] - cuda_err[1]);
}
*/
void CudaLCP_ComputeNextIter_V2f(int dim,int compteur2,const void * m,int mP,const void * q,void * f,void * err,void * res) {
	dim3 threads(BSIZE,1);
	dim3 grid((dim+BSIZE-1)/BSIZE,1);

	CudaLCP_ComputeNextIter_kernel_V2<float><<< grid, threads,0 >>>(dim,compteur2,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaLCP_ComputeNextIter_V2d(int dim,int compteur2,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid((dim+BSIZE-1)/BSIZE,1);

	CudaLCP_ComputeNextIter_kernel_V2<double><<< grid, threads,0 >>>(dim,compteur2,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}

/////////////////////////////////3em version

void CudaLCP_ComputeNextIter_V3_OneKernelf(int dim,const void * m,int mP,const void * q,void * f,void * err,void * res) {
	dim3 threads(dim,1);
	dim3 grid(1,1);

	CudaLCP_ComputeNextIter_V3_OneKernel_kernel<float><<< grid, threads,0 >>>(dim,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaLCP_ComputeNextIter_V3_OneKerneld(int dim,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(dim,1);
	dim3 grid(1,1);

	CudaLCP_ComputeNextIter_V3_OneKernel_kernel<double><<< grid, threads,0 >>>(dim,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}

////////////////////////////4em version

/*
for (int block=0; block<d; block++) {
	int compteur2 = debutblock+block;

	float f_1 = cuda_f[compteur2];

	float f_2;
	if (cuda_res[compteur2]<0) f_2 = -cuda_res[compteur2]/cuda_M[compteur2][compteur2];
	else f_2=0.0;

	cuda_f[compteur2] = f_2;
	cuda_res[compteur2] = cuda_q[compteur2];
	cuda_err[0] += fabs(cuda_M[compteur2][compteur2] * (f_2 - f_1));

	for (int compteur3=debutblock;compteur3<debutblock+d;compteur3++) {
		if (compteur3!=compteur2) cuda_res[compteur3] += cuda_M[compteur2][compteur3] * f_2;
}
}
*/
void CudaLCP_ComputeNextIter_V4_DepKernelf(int d,int debutblock,const void * m,int mP,const void * q,void * f,void * err,void * res) {
	dim3 threads(BSIZE,1);
	dim3 grid(1,1);

	CudaLCP_ComputeNextIter_V4_DepKernel_kernel<float><<< grid, threads,0>>>(d,debutblock,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaLCP_ComputeNextIter_V4_DepKerneld(int d,int debutblock,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid(1,1);

	CudaLCP_ComputeNextIter_V4_DepKernel_kernel<double><<< grid, threads,0>>>(d,debutblock,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}

/*
for (int compteur4=0;compteur4<dim-d;compteur4++) {
	int ligne = compteur4;
	if (compteur4>=debutblock) ligne+=BSIZE;

	for (int k=debutblock;k<debutblock+d;k++) {
		cuda_res[ligne]+= cuda_M[k][ligne] * cuda_f[k];
}
}
*/
void CudaLCP_ComputeNextIter_V4_InDepKernelf(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
	dim3 threads(BSIZE,1);
	dim3 grid(1,V4_MAX_LINE);

	CudaLCP_ComputeNextIter_V4_InDepKernel_kernel<float><<< grid, threads,0>>>(dim,debutBlock,(const float*) m,mP,(const float*)f, (float *)res,BSIZE/2);
}
void CudaLCP_ComputeNextIter_V4_InDepKerneld(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid(1,V4_MAX_LINE);

	CudaLCP_ComputeNextIter_V4_InDepKernel_kernel<double><<< grid, threads,0>>>(dim,debutBlock,(const double*) m,mP,(const double*)f, (double *)res,BSIZE/2);
#endif
}

////////////////////////////////////////5em version

/*
for (int compteur2=0; compteur2<BSIZE;compteur2++) {	//calcule le bloc en haut a gauche pour lancer le calcul
	float f_2;
	if (cuda_res[compteur2]<0) f_2 = -cuda_res[compteur2]/cuda_M[compteur2][compteur2];
	else f_2=0.0;

	cuda_f[compteur2] = f_2;
	cuda_res[compteur2] = cuda_q[compteur2];

	for (int compteur3=0;compteur3<BSIZE;compteur3++) {
		if (compteur3!=compteur2) cuda_res[compteur3] += cuda_M[compteur3][compteur2] * f_2;
}
}
*/
void CudaLCP_ComputeNextIter_V5_FirstKernelf(const void * m,int mP,const void * q,void * f,void * res) {
	dim3 threads(BSIZE,1);
	dim3 grid(1,1);

	CudaLCP_ComputeNextIter_V5_FirstKernel_kernel<float><<< grid, threads,0 >>>((const float*) m,mP,(const float *) q,(float*)f,(float *)res);

}
void CudaLCP_ComputeNextIter_V5_FirstKerneld(const void * m,int mP,const void * q,void * f,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid(1,1);

	CudaLCP_ComputeNextIter_V5_FirstKernel_kernel<double><<< grid, threads,0 >>>((const double*) m,mP,(const double *) q,(double*)f,(double *)res);
#endif
}

/*
for (int j=0;j<d;j++) {
	int compteur2=ligne+j;//ligne du bloc en cours

	float acc=0.0;

	for (int index1=0;index1<BSIZE;index1++) {//calcul du 1er bloc independant
		int dc = index1+colone;
		if (dc<dim) acc += cuda_M[dc][compteur2] * cuda_f[dc];
}

	float r_calc = cuda_res[compteur2]+acc;
	float f_1 = cuda_f[compteur2];

	float f_2;
	if (r_calc<0) f_2 = -r_calc/cuda_M[compteur2][compteur2];
	else f_2=0.0;

	cuda_f[compteur2] = f_2;
	cuda_res[compteur2] = cuda_q[compteur2];
	cuda_err[0] += fabs(cuda_M[compteur2][compteur2] * (f_2 - f_1));

	for (int index1=0;index1<BSIZE;index1++) {//calcul du 1er bloc independant
		int compteur3 = ligne+index1;
		if ((compteur3<dim) && (compteur3!=compteur2)) cuda_res[compteur3] += cuda_M[compteur2][compteur3] * f_2;
}
}

for (int j=0;j<nbth;j++) {
	int dl=j;
	if (ligne-BSIZE<0) dl+=BSIZE;
	else if (j>=ligne-BSIZE) dl+=2*BSIZE;

	for (int i=0;i<BSIZE;i++) {
		int dc = colone+i;
		if (dc<dim) cuda_res[dl]+= cuda_M[dc][dl] * cuda_f[dc];
}
}
*/
void CudaLCP_ComputeNextIter_V5_SecondKernelf(int dim,int nbth,int d,int ligne,int colone,const void * m,int mP,const void * q,void * f,void * err,void * res) {
	dim3 threads(BSIZE,1);
	dim3 grid(1,nbth+1);

	CudaLCP_ComputeNextIter_V5_SecondKernel_kernel<float><<< grid, threads,0 /*,threads.x*sizeof(float)*/ >>>(dim,d,ligne,colone,(const float*) m,mP,(const float *) q,(float*)f,(float*)err,(float *)res,BSIZE/2);
}
void CudaLCP_ComputeNextIter_V5_SecondKerneld(int dim,int nbth,int d,int ligne,int colone,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE,1);
	dim3 grid(1,nbth+1);

	CudaLCP_ComputeNextIter_V5_SecondKernel_kernel<double><<< grid, threads,0 /*,threads.x*sizeof(double)*/ >>>(dim,d,ligne,colone,(const double*) m,mP,(const double *) q,(double*)f,(double*)err,(double *)res,BSIZE/2);
#endif
}

///////////////////////////////////////////////////6em version

void CudaLCP_FullKernel_V6f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	dim3 threads(BSIZE_C,1);
	dim3 grid(1,NB_MULTIPROC);

	CudaLCP_FullKernel_V6_kernel<<< grid, threads,threads.x*threads.y*sizeof(float)>>>(dim,dim*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);

}
void CudaLCP_FullKernel_V6d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE_C,1);
	dim3 grid(1,NB_MULTIPROC);

	CudaLCP_FullKernel_V6_kernel<<< grid, threads,threads.x*threads.y*sizeof(double)>>>(dim,dim*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);
#endif
}

/////////////////////////////////////////////////7 em version

void CudaLCP_FullKernel_V7f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	dim3 threads(BSIZE_C,BSIZE_L);
	dim3 grid(1,NB_MULTIPROC);
	int dim_n = (dim+BSIZE_L-1)/BSIZE_L * BSIZE_L;

	CudaLCP_FullKernel_V7_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V7d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(BSIZE_C,BSIZE_L);
	dim3 grid(1,NB_MULTIPROC);
	int dim_n = (dim+BSIZE_L-1)/BSIZE_L * BSIZE_L;

	CudaLCP_FullKernel_V7_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);

#endif
}

//////////////////version 8

void CudaLCP_FullKernel_V8f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {

	dim3 threads(V8_BSIZE,V8_BSIZE);
	dim3 grid(1,V8_NBPROC);
	int dim_n = (dim+V8_BSIZE-1)/V8_BSIZE * V8_BSIZE;

	CudaLCP_FullKernel_V8_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V8d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(V8_BSIZE,V8_BSIZE);
	dim3 grid(1,V8_NBPROC);
	int dim_n = (dim+V8_BSIZE-1)/V8_BSIZE * V8_BSIZE;

	CudaLCP_FullKernel_V8_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);

#endif
}

//////////////////version 9
void CudaLCP_FullKernel_V9f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	double dim_n_d = (dim + V9_NBPROC * 2.0 - 1.0) / (V9_NBPROC * 2.0);
	double alloc_d = 5 * dim_n_d + dim * dim_n_d * 2 + dim_n_d * dim_n_d;

	unsigned dim_n = (unsigned) dim_n_d;
	unsigned alloc = (unsigned) alloc_d;

	if (dim_n*dim_n*V9_NBREG_USED>V9_NBREG) {
		myprintf("Utilisation de la version 8 car il y a trop de registres utilisés (used = %d , max = %d)\n",dim_n*dim_n*V9_NBREG_USED,V9_NBREG);
		//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
	} else if (dim>V9_SZMAX) {
		myprintf("Utilisation de la version 8 car il y a trop de contacts (max = %d , dim = %d)\n",V9_SZMAX,dim);
		//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
	} else {


		//unsigned dim_n = (dim + V9_NBPROC * 2 - 1) / (V9_NBPROC * 2);
		//unsigned alloc = dim_n + dim_n + dim_n + dim * dim_n + dim * dim_n + dim_n * dim_n;

		dim3 threads(dim_n,dim_n);
		dim3 grid(1,V9_NBPROC);

		//printf("\nallocSize %d maxSize = %d blocsize= %d\n",alloc,V9_SZMAX,dim_n);
		switch(dim_n)
		{
#define CASE(N) \
			case N: \
			CudaLCP_FullKernel_V9_kernel<float,N><<< grid, threads, alloc *  sizeof(float)>>>(dim,itMax*V9_NBPROC_2*dim_n,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share); \
				break
			CASE(1);
			CASE(2);
			CASE(3);
			CASE(4);
			CASE(5);
			CASE(6);
			CASE(7);
			CASE(8);
			CASE(9);
			CASE(10);
			CASE(11);
			CASE(12);
			CASE(13);
			CASE(14);
			CASE(15);
			CASE(16);
			CASE(17);
			CASE(18);
			CASE(19);
			CASE(20);
			CASE(21);
			CASE(22);
#undef CASE
		}
		//CudaLCP_FullKernel_V9_kernel<<< grid, threads, alloc *  sizeof(float)>>>(dim,dim_n,V9_NBPROC*2,itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
	}
}
void CudaLCP_FullKernel_V9d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {

}

/*
void CudaLCP_FullKernel_V10f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	unsigned dim_n = 9;

	if ((dim>0) && (dim<56)) dim_n = 9;
	else dim_n = 9;

	unsigned alloc = 5 * dim_n + dim * dim_n * 2 + dim_n * dim_n;
	unsigned nbBlock = (dim + dim_n*2 - 1) / (dim_n*2);

	if (nbBlock<=V10_NB_PROC) {
		dim3 threads(dim_n,dim_n);
		dim3 grid(1,nbBlock);

		switch(dim_n)
		{
#define CASE(N) \
			case N: \
			CudaLCP_FullKernel_V10_kernel<float,N><<< grid, threads, alloc *  sizeof(float)>>>(dim,itMax*nbBlock*2*dim_n,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share); \
			break
			CASE(1);
			CASE(2);
			CASE(3);
			CASE(4);
			CASE(5);
			CASE(6);
			CASE(7);
			CASE(8);
			CASE(9);
			CASE(10);
			CASE(11);
			CASE(12);
			CASE(13);
			CASE(14);
			CASE(15);
			CASE(16);
			CASE(17);
			CASE(18);
			CASE(19);
			CASE(20);
			CASE(21);
			CASE(22);
#undef CASE
		}

		//CudaLCP_FullKernel_V10_kernel<float,dim_n><<< grid, threads, alloc *  sizeof(float)>>>(dim,itMax*nbBlock*2*dim_n,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
	} else {
		myprintf("Utilisation de la version 8 car il y a trop de multiprocesseurs utilisés (max = %d , dim = %d)\n",V10_NB_PROC,nbBlock);
		//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
	}
}
*/

void CudaLCP_FullKernel_V10f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	unsigned alloc = 5 * V10_DIM_N + dim * V10_DIM_N * 2 + V10_DIM_N * V10_DIM_N;
	unsigned nbBlock = (dim + V10_DIM_N*2 - 1) / (V10_DIM_N*2);

	if (nbBlock<=V10_NB_PROC) {
		dim3 threads(V10_DIM_N,V10_DIM_N);
		dim3 grid(1,nbBlock);

		CudaLCP_FullKernel_V10_kernel<float,V10_DIM_N><<< grid, threads, alloc *  sizeof(float)>>>(dim,itMax*nbBlock*2*V10_DIM_N,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
	} else {
		myprintf("Utilisation de la version 8 car il y a trop de multiprocesseurs utilisés (max = %d , dim = %d)\n",V10_NB_PROC,nbBlock);
		//CudaLCP_FullKernel_V8f(dim,itMax,tol,m,mP,q,f,err,share);
	}
}
void CudaLCP_FullKernel_V10d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {

}

void CudaLCP_FullKernel_V11f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {

	dim3 threads(V11_BSIZE,V11_BSIZE);
	dim3 grid(1,V11_NBPROC);
	int dim_n = (dim+V11_BSIZE-1)/V11_BSIZE * V11_BSIZE;

	CudaLCP_FullKernel_V11_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V11d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(V11_BSIZE,V11_BSIZE);
	dim3 grid(1,V11_NBPROC);
	int dim_n = (dim+V11_BSIZE-1)/V11_BSIZE * V11_BSIZE;

	CudaLCP_FullKernel_V11_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);

#endif
}

void CudaLCP_FullKernel_V12f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	dim3 threads(V12_BSIZE,V12_BSIZE);
	dim3 grid(1,V12_NBPROC);
	int dim_n = (dim+V12_BSIZE-1)/V12_BSIZE * V12_BSIZE;

	CudaLCP_FullKernel_V12_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V12d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(V12_BSIZE,V12_BSIZE);
	dim3 grid(1,V12_NBPROC);
	int dim_n = (dim+V12_BSIZE-1)/V12_BSIZE * V12_BSIZE;

	CudaLCP_FullKernel_V12_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);

#endif
}

void CudaLCP_FullKernel_V13f(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {

	dim3 threads(V13_BSIZE,V13_BSIZE);
	dim3 grid(1,V13_NBPROC);
	int dim_n = (dim+V13_BSIZE-1)/V13_BSIZE * V13_BSIZE;

	CudaLCP_FullKernel_V13_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaLCP_FullKernel_V13d(int dim,int itMax,float tol,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(V13_BSIZE,V13_BSIZE);
	dim3 grid(1,V13_NBPROC);
	int dim_n = (dim+V13_BSIZE-1)/V13_BSIZE * V13_BSIZE;

	CudaLCP_FullKernel_V13_kernel<<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,(double)tol,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);

#endif
}
//////////////////////////////////////////////nlcp

/*
	for (int i=0;i<numContacts;i++) {
		int index0 = 3*i;
		int index1 = index0+1;
		int index2 = index0+2;

		cuda_res[index0] = cuda_q[index0];
		cuda_res[index1] = cuda_q[index1];
		cuda_res[index2] = cuda_q[index2];

		for (int j=index2+1;j<dim;j++) {
			cuda_res[index0] += cuda_M[j][index0] * cuda_f[j];
			cuda_res[index1] += cuda_M[j][index1] * cuda_f[j];
			cuda_res[index2] += cuda_M[j][index2] * cuda_f[j];
}
}
*/
void CudaNLCP_MultIndepf(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
	dim3 threads(MBSIZE,1);
	dim3 grid((dim+MBSIZE-1)/MBSIZE,dim);

	CudaNLCP_MultIndep_kernel<float><<< grid, threads,0>>>(dim, (const float*)m,pM,(const float*)f,(float*)tmp,pTmp);
}
void CudaNLCP_MultIndepd(int dim,const void * m,int pM,const void * f,void * tmp,int pTmp) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(MBSIZE,1);
	dim3 grid((dim+MBSIZE-1)/MBSIZE,dim);

	CudaNLCP_MultIndep_kernel<double><<< grid, threads,0>>>(dim, (const double*)m,pM,(const double*)f,(double*)tmp,pTmp);
#endif
}

void CudaNLCP_AddIndepf(int dim,int tmpsize,const void * q,const void * tmp,int pTmp,void * res) {
	dim3 threads(tmpsize,1);
	dim3 grid(dim,1);

	CudaNLCP_AddIndep_kernel<float><<< grid, threads,threads.x*sizeof(float)>>>(dim,tmpsize,(const float*)q,(const float*)tmp,pTmp,(float*)res);
}
void CudaNLCP_AddIndepd(int dim,int tmpsize,const void * q,const void * tmp,int pTmp,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(tmpsize,1);
	dim3 grid(dim,1);

	CudaNLCP_AddIndep_kernel<double><<< grid, threads,threads.x*sizeof(double)>>>(dim,tmpsize,(const double*)q,(const double*)tmp,pTmp,(double*)res);
#endif
}

void CudaNLCP_ComputeNextIter_V1_InDepKernelf(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
	dim3 threads(MBSIZE,1);
	dim3 grid(1,dim-d);

	CudaNLCP_ComputeNextIter_V1_InDepKernel_kernel<float><<< grid, threads,0>>>(dim,debutBlock,(const float*) m,mP,(const float*)f, (float *)res);
}
void CudaNLCP_ComputeNextIter_V1_InDepKerneld(int dim,int d,int debutBlock,const void * m,int mP,const void * f,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(MBSIZE,1);
	dim3 grid(1,dim-d);

	CudaNLCP_ComputeNextIter_V1_InDepKernel_kernel<double><<< grid, threads,0>>>(dim,debutBlock,(const double*) m,mP,(const double*)f, (double *)res);
#endif
}

void CudaNLCP_ComputeNextIter_V1_DepKernelf(int d,int debutblock,float mu,const void * m,int mP,const void * q,void * f,void * err,void * res) {
	dim3 threads(MBSIZE,1);
	dim3 grid(1,1);

	CudaNLCP_ComputeNextIter_V1_DepKernel_kernel<float><<< grid, threads,0>>>(d,debutblock,mu,(const float*) m,mP,(const float *) q,(float*)f, (float*) err,(float *)res);
}
void CudaNLCP_ComputeNextIter_V1_DepKerneld(int d,int debutblock,float mu,const void * m,int mP,const void * q,void * f,void * err,void * res) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(MBSIZE,1);
	dim3 grid(1,1);

	CudaNLCP_ComputeNextIter_V1_DepKernel_kernel<double><<< grid, threads,0>>>(d,debutblock,(double)mu,(const double*) m,mP,(const double *) q,(double*)f, (double*) err,(double *)res);
#endif
}

void CudaNLCP_FullKernel_V2f(int dim,int itMax,float tol,float mu,const void * m,int mP,const void * q,void * f,void * err,void * share) {
	dim3 threads(MBSIZE_C,MBSIZE_C);
	dim3 grid(1,NB_MULTIPROC);
	int dim_n = (dim+MBSIZE_C-1)/MBSIZE_C * MBSIZE_C;

	CudaNLCP_FullKernel_V2_kernel<float><<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,mu,(const float *) m,mP,(const float *) q,(float *) f,(float *) err,(int *) share);
}
void CudaNLCP_FullKernel_V2d(int dim,int itMax,float tol,float mu,const void * m,int mP,const void * q,void * f,void * err,void * share) {
#if !defined(__CUDA_ARCH__) ||  __CUDA_ARCH__ < 130
	myprintf("CUDA ERROR: double precision not supported.\n");
#else
	dim3 threads(MBSIZE_C,MBSIZE_C);
	dim3 grid(1,NB_MULTIPROC);
	int dim_n = (dim+MBSIZE_C-1)/MBSIZE_C * MBSIZE_C;

	CudaNLCP_FullKernel_V2_kernel<double><<< grid, threads,0>>>(dim,dim_n,dim_n*itMax,tol,mu,(const double *) m,mP,(const double *) q,(double *) f,(double *) err,(int *) share);

#endif
}