This file is indexed.

/usr/include/shogun/features/FKFeatures.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 1999-2008 Gunnar Raetsch
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _CFKFEATURES__H__
#define _CFKFEATURES__H__

#include <shogun/features/SimpleFeatures.h>
#include <shogun/distributions/HMM.h>

namespace shogun
{

template <class T> class CSimpleFeatures;
class CHMM;

/** @brief The class FKFeatures implements Fischer kernel features obtained from
 * two Hidden Markov models.
 *
 * It was used in
 *
 * K. Tsuda, M. Kawanabe, G. Raetsch, S. Sonnenburg, and K.R. Mueller. A new
 * discriminative kernel from probabilistic models. Neural Computation,
 * 14:2397-2414, 2002.
 *
 * which also has the details.
 *
 * Note that FK-features are computed on the fly, so to be effective feature
 * caching should be enabled.
 *
 * It inherits its functionality from CSimpleFeatures, which should be
 * consulted for further reference.
 */
class CFKFeatures: public CSimpleFeatures<float64_t>
{
	public:
		/** default constructor  */
		CFKFeatures();

		/** constructor
		 *
		 * @param size cache size
		 * @param p positive HMM
		 * @param n negative HMM
		 */
		CFKFeatures(int32_t size, CHMM* p, CHMM* n);

		/** copy constructor */
		CFKFeatures(const CFKFeatures &orig);

		virtual ~CFKFeatures();

		/** set HMMs
		 *
		 * @param p positive HMM
		 * @param n negative HMM
		 */
		void set_models(CHMM* p, CHMM* n);

		/** set weight a
		 *
		 * @param a weight a
		 */
		inline void set_a(float64_t a)
		{
			weight_a=a;
		}

		/** get weight a
		 *
		 * @return weight a
		 */
		inline float64_t get_a()
		{
			return weight_a;
		}

		/** set feature matrix
		 *
		 * @return something floaty
		 */
		virtual float64_t* set_feature_matrix();

		/** set opt a
		 *
		 * @param a a
		 * @return something floaty
		 */
		float64_t set_opt_a(float64_t a=-1);

		/** get weight_a
		 *
		 * @return weight_a
		 */
		inline float64_t get_weight_a() { return weight_a; };

		/** @return object name */
		inline virtual const char* get_name() const { return "FKFeatures"; }

	protected:
		/** compute feature vector
		 *
		 * @param num num
		 * @param len len
		 * @param target
		 * @return something floaty
		 */
		virtual float64_t* compute_feature_vector(
			int32_t num, int32_t& len, float64_t* target=NULL);

		/** computes the feature vector to the address addr
		 *
		 * @param addr address
		 * @param num num
		 * @param len len
		 */
		void compute_feature_vector(float64_t* addr, int32_t num, int32_t& len);

		/** deriv a
		 *
		 * @param a a
		 * @param dimension dimension
		 */
		float64_t deriv_a(float64_t a, int32_t dimension=-1) ;

	private:
		void init();

	protected:
		/** positive HMM */
		CHMM* pos;
		/** negative HMM */
		CHMM* neg;
		/** positive prob */
		float64_t* pos_prob;
		/** negative prob */
		float64_t* neg_prob;
		/** weight a */
		float64_t weight_a;
};
}
#endif