This file is indexed.

/usr/include/shogun/converter/LaplacianEigenmaps.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011 Sergey Lisitsyn
 * Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
 */

#ifndef LAPLACIANEIGENMAPS_H_
#define LAPLACIANEIGENMAPS_H_
#include <shogun/lib/config.h>
#ifdef HAVE_LAPACK
#include <shogun/converter/EmbeddingConverter.h>
#include <shogun/features/Features.h>
#include <shogun/distance/Distance.h>

namespace shogun
{

class CFeatures;
class CDistance;

/** @brief the class LaplacianEigenmaps used to preprocess
 * data using Laplacian Eigenmaps algorithm as described in:
 *
 * Belkin, M., & Niyogi, P. (2002). 
 * Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. 
 * Science, 14, 585-591. MIT Press. 
 * Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9400&rep=rep1&type=pdf
 *
 * Note that the algorithm is very sensitive to the heat distribution coefficient
 * and number of neighbors in the nearest neighbor graph. No connectivity check
 * is provided, so the preprocessor will not produce reasonable embeddings if the k value
 * makes a graph that is not connected. 
 *
 * This implementation is not parallel due to performance issues. Generalized 
 * eigenproblem is the bottleneck for this algorithm.
 *
 * Solving of generalized eigenproblem involves LAPACK DSYGVX routine
 * and requires extra memory for right-hand side matrix storage. 
 * If ARPACK is available then DSAUPD/DSEUPD is used with no extra 
 * memory usage. 
 *
 */
class CLaplacianEigenmaps: public CEmbeddingConverter
{
public:

	/** constructor */
	CLaplacianEigenmaps();

	/** destructor */
	virtual ~CLaplacianEigenmaps();

	/** apply to features
	 * @param features to embed
	 * @param embedding features
	 */
	virtual CFeatures* apply(CFeatures* features);

	/** embed distance
	 * @param distance to use for embedding
	 * @param embedding features
	 */
	virtual CSimpleFeatures<float64_t>* embed_distance(CDistance* distance, CFeatures* features=NULL);

	/** setter for K parameter
	 * @param k k value
	 */
	void set_k(int32_t k);

	/** getter for K parameter
	 * @return k value
	 */
	int32_t get_k() const;

	/** setter for TAU parameter
	 * @param tau tau value
	 */
	void set_tau(float64_t tau);
	
	/** getter for TAU parameter
	 * @return tau value
	 */
	float64_t get_tau() const;

	/** get name */
	virtual const char* get_name() const;

protected:

	/** init */
	void init();

	/** construct embedding
	 * @param features features
	 * @param W_matrix W matrix to be used
	 */
	virtual CSimpleFeatures<float64_t>* construct_embedding(CFeatures* features, 
	                                                        SGMatrix<float64_t> W_matrix);

protected:

	/** number of neighbors */
	int32_t m_k;

	/** tau parameter of heat distribution */
	float64_t m_tau;

};
}

#endif /* HAVE_LAPACK */
#endif /* LAPLACIANEIGENMAPS_H_ */