This file is indexed.

/usr/include/shogun/clustering/Hierarchical.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2007-2009 Soeren Sonnenburg
 * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _HIERARCHICAL_H__
#define _HIERARCHICAL_H__

#include <stdio.h>
#include <shogun/lib/common.h>
#include <shogun/io/SGIO.h>
#include <shogun/distance/Distance.h>
#include <shogun/machine/DistanceMachine.h>

namespace shogun
{
class CDistanceMachine;

/** @brief Agglomerative hierarchical single linkage clustering.
 *
 * Starting with each object being assigned to its own cluster clusters are
 * iteratively merged.  Here the clusters are merged whose elements have
 * minimum distance, i.e.  the clusters A and B that obtain
 *
 * \f[
 * \min\{d({\bf x},{\bf x'}): {\bf x}\in {\cal A},{\bf x'}\in {\cal B}\}
 * \f]
 *
 * are merged.
 *
 * cf e.g. http://en.wikipedia.org/wiki/Data_clustering*/
class CHierarchical : public CDistanceMachine
{
	public:
		/** default constructor */
		CHierarchical();

		/** constructor
		 *
		 * @param merges the merges
		 * @param d distance
		 */
		CHierarchical(int32_t merges, CDistance* d);
		virtual ~CHierarchical();

		/** get classifier type
		 *
		 * @return classifier type HIERARCHICAL
		 */
		virtual EClassifierType get_classifier_type();

		/** load distance machine from file
		 *
		 * @param srcfile file to load from
		 * @return if loading was successful
		 */
		virtual bool load(FILE* srcfile);

		/** save distance machine to file
		 *
		 * @param dstfile file to save to
		 * @return if saving was successful
		 */
		virtual bool save(FILE* dstfile);

		/** set merges
		 *
		 * @param m new merges
		 */
		inline void set_merges(int32_t m)
		{
			ASSERT(m>0);
			merges=m;
		}

		/** get merges
		 *
		 * @return merges
		 */
		int32_t get_merges();

		/** get assignment
		 *
		 */
		SGVector<int32_t> get_assignment();

		/** get merge distance
		 *
		 */
		SGVector<float64_t> get_merge_distances();

		/** get cluster pairs
		 *
		 */
		SGMatrix<int32_t> get_cluster_pairs();

		/** @return object name */
		inline virtual const char* get_name() const { return "Hierarchical"; }

	protected:
		/** estimate hierarchical clustering
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

		/** TODO: Ensures cluster centers are in lhs of underlying distance
		 * Currently: does nothing.
		 * */
		virtual void store_model_features();

		/** NOT IMPLEMENTED */
		virtual CLabels* apply();

		/** NOT IMPLEMENTED */
		virtual CLabels* apply(CFeatures* data);

		/** NOT IMPLEMENTED */
		virtual float64_t apply(int32_t num);

	protected:
		/// the number of merges in hierarchical clustering
		int32_t merges;

		/// number of dimensions
		int32_t dimensions;

		/// size of assignment table
		int32_t assignment_size;

		/// cluster assignment for the num_points
		int32_t* assignment;

		/// size of the below tables
		int32_t table_size;

		/// tuples of i/j
		int32_t* pairs;

		/// distance at which pair i/j was added
		float64_t* merge_distance;
};
}
#endif