This file is indexed.

/usr/include/shogun/classifier/svm/SubGradientSVM.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2007-2009 Soeren Sonnenburg
 * Written (W) 2007-2008 Vojtech Franc
 * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _SUBGRADIENTSVM_H___
#define _SUBGRADIENTSVM_H___

#include <shogun/lib/common.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/Labels.h>

namespace shogun
{
/** @brief class SubGradientSVM */
class CSubGradientSVM : public CLinearMachine
{
	public:
		/** default constructor */
		CSubGradientSVM();

		/** constructor
		 *
		 * @param C constant C
		 * @param traindat training features
		 * @param trainlab labels for training features
		 */
		CSubGradientSVM(
			float64_t C, CDotFeatures* traindat,
			CLabels* trainlab);
		virtual ~CSubGradientSVM();

		/** get classifier type
		 *
		 * @return classifier type SUBGRADIENTSVM
		 */
		virtual inline EClassifierType get_classifier_type() { return CT_SUBGRADIENTSVM; }

		/** set C
		 *
		 * @param c_neg C1
		 * @param c_pos C2
		 */
		inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }


		/** get C1
		 *
		 * @return C1
		 */
		inline float64_t get_C1() { return C1; }

		/** get C2
		 *
		 * @return C2
		 */
		inline float64_t get_C2() { return C2; }

		/** set if bias shall be enabled
		 *
		 * @param enable_bias if bias shall be enabled
		 */
		inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }

		/** check if bias is enabled
		 *
		 * @return if bias is enabled
		 */
		inline bool get_bias_enabled() { return use_bias; }

		/** set epsilon
		 *
		 * @param eps new epsilon
		 */
		inline void set_epsilon(float64_t eps) { epsilon=eps; }

		/** get epsilon
		 *
		 * @return epsilon
		 */
		inline float64_t get_epsilon() { return epsilon; }

		/** set qpsize
		 *
		 * @param q new qpsize
		 */
		inline void set_qpsize(int32_t q) { qpsize=q; }

		/** get qpsize
		 *
		 * @return qpsize
		 */
		inline int32_t get_qpsize() { return qpsize; }

		/** set qpsize_max
		 *
		 * @param q new qpsize_max
		 */
		inline void set_qpsize_max(int32_t q) { qpsize_max=q; }

		/** get qpsize_max
		 *
		 * @return qpsize_max
		 */
		inline int32_t get_qpsize_max() { return qpsize_max; }

	protected:
		/// returns number of changed constraints for precision work_epsilon
		/// and fills active array
		int32_t find_active(
			int32_t num_feat, int32_t num_vec, int32_t& num_active,
			int32_t& num_bound);

		/// swaps the active / old_active and computes idx_active, idx_bound
		/// and sum_CXy_active arrays and the sum_Cy_active variable
		void update_active(int32_t num_feat, int32_t num_vec);

		/// compute svm objective
		float64_t compute_objective(int32_t num_feat, int32_t num_vec);

		/// compute minimum norm subgradient
		/// return norm of minimum norm subgradient
		float64_t compute_min_subgradient(
			int32_t num_feat, int32_t num_vec, int32_t num_active,
			int32_t num_bound);

		///performs a line search to determine step size
		float64_t line_search(int32_t num_feat, int32_t num_vec);

		/// compute projection
		void compute_projection(int32_t num_feat, int32_t num_vec);

		/// only computes updates on the projection
		void update_projection(float64_t alpha, int32_t num_vec);

		/// alloc helper arrays
		void init(int32_t num_vec, int32_t num_feat);

		/// de-alloc helper arrays
		void cleanup();

		/** @return object name */
		inline virtual const char* get_name() const { return "SubGradientSVM"; }

	protected:
		/** train SVM classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

	protected:
		/** C1 */
		float64_t C1;
		/** C2 */
		float64_t C2;
		/** epsilon */
		float64_t epsilon;
		/** work epsilon */
		float64_t work_epsilon;
		/** autoselected epsilon */
		float64_t autoselected_epsilon;
		/** qpsize */
		int32_t qpsize;
		/** maximum qpsize */
		int32_t qpsize_max;
		/** limit of qpsize */
		int32_t qpsize_limit;
		/** shall bias be used */
		bool use_bias;

		/** last iteration no improvement */
		int32_t last_it_noimprovement;
		/** number of iterations no improvement */
		int32_t num_it_noimprovement;

		//idx vectors of length num_vec
		/** 0=not active, 1=active, 2=on boundary */
		uint8_t* active;
		/** old active */
		uint8_t* old_active;
		/** idx active */
		int32_t* idx_active;
		/** idx bound */
		int32_t* idx_bound;
		/** delta active */
		int32_t delta_active;
		/** delta bound */
		int32_t delta_bound;
		/** proj */
		float64_t* proj;
		/** tmp proj*/
		float64_t* tmp_proj;
		/** tmp proj index */
		int32_t* tmp_proj_idx;

		//vector of length num_feat
		/** sum CXy active */
		float64_t* sum_CXy_active;
		/** v */
		float64_t* v;
		/** old v */
		float64_t* old_v;
		/** sum Cy active */
		float64_t sum_Cy_active;

		//vector of length num_feat
		/** grad w */
		float64_t* grad_w;
		/** grad b */
		float64_t grad_b;
		/** grad proj */
		float64_t* grad_proj;
		/** hinge point */
		float64_t* hinge_point;
		/** hinge index */
		int32_t* hinge_idx;

		//vectors/sym matrix of size qpsize_limit
		/** beta */
		float64_t* beta;
		/** old beta */
		float64_t* old_beta;
		/** Zv */
		float64_t* Zv;
		/** old Zv */
		float64_t* old_Zv;
		/** Z */
		float64_t* Z;
		/** old Z */
		float64_t* old_Z;

		/** timing measurement */
		float64_t tim;
};
}
#endif