This file is indexed.

/usr/include/shogun/classifier/svm/SVM.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _SVM_H___
#define _SVM_H___

#include <shogun/lib/common.h>
#include <shogun/features/Features.h>
#include <shogun/kernel/Kernel.h>
#include <shogun/machine/KernelMachine.h>

namespace shogun
{

class CMKL;

/** @brief A generic Support Vector Machine Interface.
 *
 * A support vector machine is defined as
 *  \f[
 * 		f({\bf x})=\sum_{i=0}^{N-1} \alpha_i k({\bf x}, {\bf x_i})+b
 * 	\f]
 *
 * where \f$N\f$ is the number of training examples
 * \f$\alpha_i\f$ are the weights assigned to each training example
 * \f$k(x,x')\f$ is the kernel
 * and \f$b\f$ the bias.
 *
 * Using an a-priori choosen kernel, the \f$\alpha_i\f$ and bias are determined
 * by solving the following quadratic program
 *
 * \f{eqnarray*}
 * 		\max_{\bf \alpha} && \sum_{i=0}^{N-1} \alpha_i - \sum_{i=0}^{N-1}\sum_{j=0}^{N-1} \alpha_i y_i \alpha_j y_j  k({\bf x_i}, {\bf x_j})\\
 * 		\mbox{s.t.} && 0\leq\alpha_i\leq C\\
 * 		 			&& \sum_{i=0}^{N-1} \alpha_i y_i=0\\
 * \f}
 * here C is a pre-specified regularization parameter.
 */
class CSVM : public CKernelMachine
{
	public:
		/** Create an empty Support Vector Machine Object
		 * @param num_sv with num_sv support vectors
		 */
		CSVM(int32_t num_sv=0);

		/** Create a Support Vector Machine Object from a
		 * trained SVM
		 *
		 * @param C the C parameter
		 * @param k the Kernel object
		 * @param lab the Label object
		 */
		CSVM(float64_t C, CKernel* k, CLabels* lab);
		virtual ~CSVM();

		/** set default values for members a SVM object
		*/
		void set_defaults(int32_t num_sv=0);


		/**
		 * get linear term
		 *
		 * @return the linear term
		 */
		virtual SGVector<float64_t> get_linear_term();


		/**
		 * set linear term of the QP
		 *
		 * @param linear_term the linear term
		 */
		virtual void set_linear_term(SGVector<float64_t> linear_term);


		/** load a SVM from file
		 * @param svm_file the file handle
		 */
		bool load(FILE* svm_file);

		/** write a SVM to a file
		 * @param svm_file the file handle
		 */
		bool save(FILE* svm_file);

		/** set nu
		 *
		 * @param nue new nu
		 */
		inline void set_nu(float64_t nue) { nu=nue; }


		/** set C
		 *
		 * @param c_neg new C constant for negatively labeled examples
		 * @param c_pos new C constant for positively labeled examples
		 *
		 * Note that not all SVMs support this (however at least CLibSVM and
		 * CSVMLight do)
		 */
		inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }


		/** set epsilon
		 *
		 * @param eps new epsilon
		 */
		inline void set_epsilon(float64_t eps) { epsilon=eps; }

		/** set tube epsilon
		 *
		 * @param eps new tube epsilon
		 */
		inline void set_tube_epsilon(float64_t eps) { tube_epsilon=eps; }

		/** get tube epsilon
		 *
		 * @return tube epsilon
		 */
		inline float64_t get_tube_epsilon() { return tube_epsilon; }

		/** set qpsize
		 *
		 * @param qps new qpsize
		 */
		inline void set_qpsize(int32_t qps) { qpsize=qps; }

		/** get epsilon
		 *
		 * @return epsilon
		 */
		inline float64_t get_epsilon() { return epsilon; }

		/** get nu
		 *
		 * @return nu
		 */
		inline float64_t get_nu() { return nu; }

		/** get C1
		 *
		 * @return C1
		 */
		inline float64_t get_C1() { return C1; }

		/** get C2
		 *
		 * @return C2
		 */
		inline float64_t get_C2() { return C2; }

		/** get qpsize
		 *
		 * @return qpsize
		 */
		inline int32_t get_qpsize() { return qpsize; }

		/** set state of shrinking
		 *
		 * @param enable if shrinking will be enabled
		 */
		inline void set_shrinking_enabled(bool enable)
		{
			use_shrinking=enable;
		}

		/** get state of shrinking
		 *
		 * @return if shrinking is enabled
		 */
		inline bool get_shrinking_enabled()
		{
			return use_shrinking;
		}

		/** compute svm dual objective
		 *
		 * @return computed dual objective
		 */
		float64_t compute_svm_dual_objective();

		/** compute svm primal objective
		 *
		 * @return computed svm primal objective
		 */
		float64_t compute_svm_primal_objective();

		/** set objective
		 *
		 * @param v objective
		 */
		inline void set_objective(float64_t v)
		{
			objective=v;
		}

		/** get objective
		 *
		 * @return objective
		 */
		inline float64_t get_objective()
		{
			return objective;
		}

		/** set callback function svm optimizers may call when they have a new
		 * (small) set of alphas
		 *
		 * @param m pointer to mkl object
		 * @param cb callback function
		 *
		 * */
		void set_callback_function(CMKL* m, bool (*cb)
				(CMKL* mkl, const float64_t* sumw, const float64_t suma));

		/** @return object name */
		inline virtual const char* get_name() const { return "SVM"; }

	protected:

		/**
		 * get linear term copy as dynamic array
		 *
		 * @return linear term copied to a dynamic array
		 */
		virtual float64_t* get_linear_term_array();

		/** linear term in qp */
		SGVector<float64_t> m_linear_term;

		/** if SVM is loaded */
		bool svm_loaded;
		/** epsilon */
		float64_t epsilon;
		/** tube epsilon for support vector regression*/
		float64_t tube_epsilon;
		/** nu */
		float64_t nu;
		/** C1 regularization const*/
		float64_t C1;
		/** C2 */
		float64_t C2;
		/** objective */
		float64_t objective;
		/** qpsize */
		int32_t qpsize;
		/** if shrinking shall be used */
		bool use_shrinking;

		/** callback function svm optimizers may call when they have a new
		 * (small) set of alphas */
		bool (*callback) (CMKL* mkl, const float64_t* sumw, const float64_t suma);
		/** mkl object that svm optimizers need to pass when calling the callback
		 * function */
		CMKL* mkl;
};
}
#endif