This file is indexed.

/usr/include/shogun/base/DynArray.h is in libshogun-dev 1.1.0-4ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _DYNARRAY_H_
#define _DYNARRAY_H_

#include <shogun/lib/common.h>
#include <shogun/lib/memory.h>
#include <shogun/mathematics/Math.h>

namespace shogun
{
template <class T> class CDynamicArray;
template <class T> class CDynamicObjectArray;

/** @brief Template Dynamic array class that creates an array that can
 * be used like a list or an array.
 *
 * It grows and shrinks dynamically, while elements can be accessed
 * via index.  It is performance tuned for simple types like float
 * etc. and for hi-level objects only stores pointers, which are not
 * automagically SG_REF'd/deleted.
 */
template <class T> class DynArray
{
	template<class U> friend class CDynamicArray;
	template<class U> friend class CDynamicObjectArray;
	friend class CCommUlongStringKernel;

	public:
		/** constructor
		 *
		 * @param p_resize_granularity resize granularity
		 * @param tracable
		 */
		DynArray(int32_t p_resize_granularity=128, bool tracable=true)
		{
			this->resize_granularity=p_resize_granularity;
			use_sg_mallocs=tracable;

			if (use_sg_mallocs)
				array=SG_CALLOC(T, p_resize_granularity);
			else
				array=(T*) calloc(p_resize_granularity, sizeof(T));

			num_elements=p_resize_granularity;
			last_element_idx=-1;
		}

		/** destructor */
		virtual ~DynArray()
		{
			if (use_sg_mallocs)
				SG_FREE(array);
			else
				free(array);
		}

		/** set the resize granularity
		 *
		 * @param g new granularity
		 * @return what has been set (minimum is 128)
		 */
		inline int32_t set_granularity(int32_t g)
		{
			g=CMath::max(g,128);
			this->resize_granularity = g;
			return g;
		}

		/** get array size (including granularity buffer)
		 *
		 * @return total array size (including granularity buffer)
		 */
		inline int32_t get_array_size() const
		{
			return num_elements;
		}

		/** get number of elements
		 *
		 * @return number of elements
		 */
		inline int32_t get_num_elements() const
		{
			return last_element_idx+1;
		}

		/** get array element at index
		 *
		 * (does NOT do bounds checking)
		 *
		 * @param index index
		 * @return array element at index
		 */
		inline T get_element(int32_t index) const
		{
			return array[index];
		}

		/** get array element at index as pointer
		 *
		 * (does NOT do bounds checking)
		 *
		 * @param index index
		 * @return array element at index
		 */
		inline T* get_element_ptr(int32_t index)
		{
			return &array[index];
		}

		/** get array element at index
		 *
		 * (does bounds checking)
		 *
		 * @param index index
		 * @return array element at index
		 */
		inline T get_element_safe(int32_t index) const
		{
			if (index>=get_num_elements())
			{
				SG_SERROR("array index out of bounds (%d >= %d)\n",
						 index, get_num_elements());
			}
			return array[index];
		}

		/** set array element at index
		 *
		 * @param element element to set
		 * @param index index
		 * @return if setting was successful
		 */
		inline bool set_element(T element, int32_t index)
		{
			if (index < 0)
			{
				return false;
			}
			else if (index <= last_element_idx)
			{
				array[index]=element;
				return true;
			}
			else if (index < num_elements)
			{
				array[index]=element;
				last_element_idx=index;
				return true;
			}
			else
			{
				if (resize_array(index))
					return set_element(element, index);
				else
					return false;
			}
		}

		/** insert array element at index
		 *
		 * @param element element to insert
		 * @param index index
		 * @return if setting was successful
		 */
		inline bool insert_element(T element, int32_t index)
		{
			if (append_element(get_element(last_element_idx)))
			{
				for (int32_t i=last_element_idx-1; i>index; i--)
				{
					array[i]=array[i-1];
				}
				array[index]=element;

				return true;
			}

			return false;
		}

		/** append array element to the end of array
		 *
		 * @param element element to append
		 * @return if setting was successful
		 */
		inline bool append_element(T element)
		{
			return set_element(element, last_element_idx+1);
		}

		/** STD VECTOR compatible. Append array element to the end
		 *  of array.
		 *
		 * @param element element to append
		 */
		inline void push_back(T element)
		{
			if (get_num_elements() < 0) set_element(element, 0);
			else set_element(element, get_num_elements());
		}

		/** STD VECTOR compatible. Delete array element at the end
		 *  of array.
		 */
		inline void pop_back()
		{
			if (get_num_elements() <= 0) return;
			delete_element(get_num_elements()-1);
		}

		/** STD VECTOR compatible. Return array element at the end
		 *  of array.
		 *
		 * @return element at the end of array
		 */
		inline T back() const
		{
			if (get_num_elements() <= 0) return get_element(0);
			return get_element(get_num_elements()-1);
		}

		/** find first occurence of array element and return its index
		 * or -1 if not available
		 *
		 * @param element element to search for
		 * @return index of element or -1
		 */
		int32_t find_element(T element) const
		{
			int32_t idx=-1;
			int32_t num=get_num_elements();

			for (int32_t i=0; i<num; i++)
			{
				if (array[i] == element)
				{
					idx=i;
					break;
				}
			}

			return idx;
		}

		/** delete array element at idx
		 * (does not call SG_FREE() or the like)
		 *
		 * @param idx index
		 * @return if deleting was successful
		 */
		inline bool delete_element(int32_t idx)
		{
			if (idx>=0 && idx<=last_element_idx)
			{
				for (int32_t i=idx; i<last_element_idx; i++)
					array[i]=array[i+1];

				memset(&array[last_element_idx], 0, sizeof(T));
				last_element_idx--;

				if (num_elements - last_element_idx
					> resize_granularity)
					resize_array(last_element_idx+1);

				return true;
			}

			return false;
		}

		/** resize the array
		 *
		 * @param n new size
		 * @return if resizing was successful
		 */
		bool resize_array(int32_t n)
		{
			int32_t new_num_elements= ((n/resize_granularity)+1)
				*resize_granularity;

			T* p;
            
            if (use_sg_mallocs)
                p = SG_REALLOC(T, array, new_num_elements);
            else
                p = (T*) realloc(array, new_num_elements*sizeof(T));
			if (p)
			{
				array=p;
				if (new_num_elements > num_elements)
				{
					memset(&array[num_elements], 0,
						   (new_num_elements-num_elements)*sizeof(T));
				}
				else if (n+1<new_num_elements)
				{
					memset(&array[n+1], 0,
						   (new_num_elements-n-1)*sizeof(T));
				}

				//in case of shrinking we must adjust last element idx
				if (n-1<last_element_idx)
					last_element_idx=n-1;

				num_elements=new_num_elements;
				return true;
			}
			else
				return false;
		}

		/** get the array
		 * call get_array just before messing with it DO NOT call any
		 * [],resize/delete functions after get_array(), the pointer may
		 * become invalid !
		 *
		 * @return the array
		 */
		inline T* get_array() const
		{
			return array;
		}

		/** set the array pointer and free previously allocated memory
		 *
		 * @param p_array new array
		 * @param p_num_elements last element index + 1
		 * @param array_size number of elements in array
		 */
		inline void set_array(T* p_array, int32_t p_num_elements,
							  int32_t array_size)
		{
			SG_FREE(this->array);
			this->array=p_array;
			this->num_elements=array_size;
			this->last_element_idx=p_num_elements-1;
		}

		/** clear the array (with zeros) */
		inline void clear_array()
		{
			if (last_element_idx >= 0)
				memset(array, 0, (last_element_idx+1)*sizeof(T));
		}

		/** randomizes the array */
		void shuffle()
		{
			for (index_t i=0; i<=last_element_idx; ++i)
				CMath::swap(array[i], array[CMath::random(i, last_element_idx)]);
		}

		/** operator overload for array read only access
		 * use set_element() for write access (will also make the array
		 * dynamically grow)
		 *
		 * DOES NOT DO ANY BOUNDS CHECKING
		 *
		 * @param index index
		 * @return element at index
		 */
		inline T operator[](int32_t index) const
		{
			return array[index];
		}

		/** operator overload for array assignment.
		 * Left array is resized if needed.
		 *
		 * @param orig original array
		 * @return new array
		 */
		DynArray<T>& operator=(DynArray<T>& orig)
		{
			resize_granularity=orig.resize_granularity;

			/* check if orig array is larger than current, create new array */
			if (orig.num_elements>num_elements)
			{
				SG_FREE(array);

                if (use_sg_mallocs)
                    array=SG_MALLOC(T, orig.num_elements);
                else
                    array=(T*) malloc(sizeof(T)*orig.num_elements);
			}

			memcpy(array, orig.array, sizeof(T)*orig.num_elements);
			num_elements=orig.num_elements;
			last_element_idx=orig.last_element_idx;

			return *this;
		}

		/** @return object name */
		inline virtual const char* get_name() const { return "DynArray"; }

	protected:
		/** shrink/grow step size */
		int32_t resize_granularity;

		/** memory for dynamic array */
		T* array;

		/** the number of potentially used elements in array */
		int32_t num_elements;

		/** the element in the array that has largest index */
		int32_t last_element_idx;

        /** whether SG_MALLOC or just malloc etc shall be used */
        bool use_sg_mallocs;
};
}
#endif /* _DYNARRAY_H_  */