This file is indexed.

/usr/include/rheolef/uzawa_abtbc.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# ifndef _RHEO_UZAWA_ABTBC_H
# define _RHEO_UZAWA_ABTBC_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

/*Class:uzawa_abtbc
NAME: @code{uzawa_abtbc}, @code{uzs_abtbc} -- stabilized mixed linear solver
@findex uzawa\_abtbc
@cindex mixed linear problem
@cindex Stokes problem
@cindex Uzawa algorithm
@cindex finite element method
@cindex stabilized mixed finite element method
@cindex incompresible elasticity
DESCRIPTION: 
  @noindent
  Uzawa algorithm applied to the mixed problem
  @example
       [ a  b^T ] [ u ]    [ f ]
       [        ] [   ]  = [   ]
       [ b  -c  ] [ p ]    [ g ]
  @end example
  with the bock diagonal preconditionner : (inv(a),I).
  Such mixed linear problems appears for instance with the discretization
  of Stokes problems with stabilized P1-P1 element, or with nearly
  incompressible elasticity.
  The algorithm requires the resolution of linear
  systems such as: @code{a*x = b}.
  These systems may be solved either by direct or iterative 
  algorithms. Thus, a general matrix solver class is submitted
  to the algorithm.

  @noindent
  @code{uzawa_abtb} is a specialization of the @code{uzs_abtbc} that
  uses a direct solver.

DATE:   15 nov 1997
METHODS: @uzs_abtbc
End:
*/

#include "rheolef/matrix_solver.h"
namespace rheolef { 

//<uzawa_abtbc:  
template<
    class MatrixSolver, 
    class MatrixPreconditioner, 
    class Matrix, 
    class DiagMatrix,
    class Vector, 
    class Real>
int
uzs_abtbc(
    const MatrixSolver&         m_solver,
    const Matrix&               a,
    const MatrixPreconditioner& ap,
    const Matrix&               b,
    const Matrix&               c,
    const DiagMatrix&           I,
    Vector&                     u,
    Vector&                     p,
    const Vector&               f,
    const Vector&               g,
    const Real&                 rho,
    int&                        max_iter, 
    Real&                       tol, 
    ostream*                    p_cres = 0)
{
  Float residu = 1. ;
  for (int k=1 ; k <= max_iter ; k++) {
      Vector oldp = p;
      Vector oldu = u;
      int status_ms = m_solver(a, ap, u, f - b.trans_mult(p));  
      Vector r = I.solve(b*u - g + c*p);
      p = p + rho*r;
      residu = norm(r);
      if (p_cres) *p_cres << "[uzawa_abtbc] " << k << " " << residu << "\n";
      if (residu <= tol) {
	  tol = residu;
	  max_iter = k;
	  return 0;
      }
  }
  tol = residu;
  return 1;
}

template<
    class MatrixPreconditionner,
    class Matrix,
    class Vector,
    class Real>
int
uzawa_abtbc(
    const Matrix&                a,
    const MatrixPreconditionner& ap,
    const Matrix&                b,
    const Matrix&                c,
    Vector&                      u,
    Vector&                      p,
    const Vector&                f,
    const Vector&                g,
    const Real&                  rho,
    int&                         max_iter,
    Real&                        tol,
    ostream*                     p_cres = &std::cerr)
{
    return uzs_abtbc (ldlt_solver<MatrixPreconditionner, Matrix, Vector, Vector>(),
        a, ap, b, c, EYE, u, p, f, g, rho, max_iter, tol, p_cres);
}
//>uzawa_abtbc:  
}// namespace rheolef
# endif // _RHEO_UZAWA_ABTBC_H