/usr/include/rheolef/urm_abtbc.h is in librheolef-dev 5.93-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | # ifndef _RHEO_URM_ABTBC_H
# define _RHEO_URM_ABTBC_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
/*Class:urm_abtbc
NAME: @code{urm_abtbc} -- generalized Stokes solver
@findex urm\_abtbc
@cindex Stokes problem
@cindex Uzawa algorithm
@cindex stabilized finite element method
DESCRIPTION:
@noindent
Uzawa Minimal Residual algorithm applied to the stabilized Stokes system
with the bock diagonal preconditionner : (inv(A),I).
References :
@example
El Montasser Abdalass,
Resolution performante du probleme de Stokes
par mini-elements, maillages auto-adaptatifs
et methodes multigrilles - applications.
These se l'ecole centrale de Lyon, 1987.
page 33.
Michel Fortin and Roland Glowinski,
Augmented Lagrangian methods - applications to the
numerical solution of boundary-value problems,
Elsevier, 1983,
page 4.
@end example
AUTHOR:
| Pierre.Saramito@imag.fr
LMC-IMAG, 38041 Grenoble cedex 9, France
DATE: 11 april 2001
METHODS: @urm_abtbc
End:
*/
#include "rheolef/matrix_solver.h"
namespace rheolef {
template<
class MatrixSolver,
class MatrixPreconditionner,
class MatrixMetric,
class Matrix,
class Vector,
class Real>
int
urm_abtbc(
const MatrixSolver& m_solver,
const Matrix& a,
const MatrixPreconditionner& ap,
const Matrix& b,
const Matrix& c,
const MatrixMetric& m,
Vector& u,
Vector& p,
const Vector& f,
const Vector& g,
int& max_iter,
Real& tol,
ostream* p_cres = 0)
{
m_solver(a, ap, u, f - b.trans_mult(p));
Real residu = 1;
for (int k=1; k <= max_iter; k++) {
Vector r = g - b*u - c*p;
Real residu = norm(r);
if (p_cres) *p_cres << k << " " << residu << "\n" ;
if (residu <= tol) {
tol = residu;
max_iter = k;
return 0;
}
Vector z (u.size());
m_solver(a, ap, z, b.trans_mult(r));
Real rho = dot(m*r, r) / dot(m*r, b*z - c*r);
p -= rho*r;
u += rho*z;
}
tol = residu;
return 1;
}
template<
class MatrixPreconditionner,
class Matrix,
class Vector,
class Real>
int
urm_abtbc(
const Matrix& a,
const MatrixPreconditionner& ap,
const Matrix& b,
const Matrix& c,
Vector& u,
Vector& p,
const Vector& f,
const Vector& g,
int& max_iter,
Real& tol,
ostream* p_cres = &std::cerr)
//>uzawa_abtb:
{
return urm_abtbc (ldlt_solver<MatrixPreconditionner, Matrix, Vector, Vector>(),
a, ap, b, c, EYE, u, p, f, g, max_iter, tol, p_cres);
}
}// namespace rheolef
# endif // _RHEO_URM_ABTBC_H
|