This file is indexed.

/usr/include/rheolef/ssk.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# ifndef _SKIT_SSK_H
# define _SKIT_SSK_H
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

/*Class:ssk
NAME:   @code{ssk} - symmetric skyline matrix format 
@clindex ssk
@clindex csr
@clindex vec
@clindex permutation
@toindex spooles, multifrontal solver library
@toindex umfpack, multifrontal solver library
@toindex taucs, out-of-core sparse solver library
@cindex Choleski factorization
@cindex direct solver
@cindex multifrontal factorization
@cindex skyline data structure
@cindex chevron data structure
@cindex Gibbs renumbering
DESCRIPTION:       
 @noindent
 The class implements a symmetric matrix Choleski factorization.
 Let @var{a} be a square invertible matrix in 
 @code{csr} format (@pxref{csr class}).
 @example
     	csr<Float> a;
 @end example
 @noindent
 We get the factorization by:
 @example
     	ssk<Float> m = ldlt(a);
 @end example
 @noindent
 Each call to the direct solver for a*x = b writes either:
 @example
     	vec<Float> x = m.solve(b);
 @end example
 @noindent
 or
 @example
     	m.solve(b,x);
 @end example

DATA STRUCTURE:       
 @noindent
 The storage is either skyline, multi-file or
 chevron.
 This alternative depends upon the configuration
 (@pxref{Installing}).
 The chevron data structure is related to the multifrontal 
 algorithm and is implemented by using the spooles library.
 The multi-file data structure refers to the out-of-core
 algorithm and is implemented by using the taucs library.
 If such a library is not available, the @code{ssk} class
 implements a skyline storage scheme and the profil storage of the 
 @code{ssk} matrix is optimized by optimizing the renumbering,
 by using the Gibbs, Pooles and Stockmeyer algorithm available
 via the @code{permutation} class
 (@pxref{permutation class}).
 @quotation
    Algorithm 582, collected Algorithms from ACM.
    Algorithm appeared in ACM-Trans. Math. Software, vol.8, no. 2,
    Jun., 1982, p. 190.
 @end quotation
 @noindent
 When implementing the skyline data structure,
 we can go back to the @code{csr} format, for the 
 pupose of pretty-printing:
 @example
     	cout << ps << color << logscale << csr<Float>(m);
 @end example

AUTHOR: 
     Pierre Saramito
   | Pierre.Saramito@imag.fr
    LMC-IMAG, 38041 Grenoble cedex 9, France
DATE:   21 january 1997
METHODS: @ssk
End:
*/
# include "rheolef/array.h"
# include "rheolef/csr.h"
# include "rheolef/permutation.h"
namespace rheolef { 
	
#if defined(_RHEOLEF_HAVE_SPOOLES)
template<class T>
class spooles_rep : public occurence {
    	void *_p;
public:
	typedef unsigned int size_type;
	typedef T        element_type;
	spooles_rep ();
	spooles_rep (const csr<element_type>&);
	~spooles_rep();
	size_type nrow () const;
	size_type ncol () const;
	size_type nnz () const;
        void solve(const vec<element_type>& b, vec<element_type>& x) const;
	void factorize_ldlt();
};
//<ssk:
template<class T>
class ssk : smart_pointer<spooles_rep<T> > {
public:
// typedefs:

	typedef          T                          element_type;
	typedef typename spooles_rep<T>::size_type  size_type;

// allocators/deallocators:

	ssk ();
	explicit ssk<T> (const csr<T>&);

// accessors:

	size_type nrow () const;
	size_type ncol () const;
	size_type nnz  () const;
    
// factorisation and solver:

        void solve(const vec<T>& b, vec<T>& x) const;
	vec<T> solve(const vec<T>& b) const;
	void factorize_ldlt();
protected:
	const spooles_rep<T>& data() const {
		return smart_pointer<spooles_rep<T> >::data();
	}
	spooles_rep<T>& data() {
		return smart_pointer<spooles_rep<T> >::data();
	}
};
template <class T>
ssk<T> ldlt (const csr<T>& m);
//>ssk:
// ===============================[ INLINED ]====================================
template <class T>
inline
ssk<T>::ssk ()
 : smart_pointer<spooles_rep<T> > (new_macro(spooles_rep<T>))
{
}
template <class T>
inline
ssk<T>::ssk (const csr<T>& a)
 : smart_pointer<spooles_rep<T> > (new_macro(spooles_rep<T> (a)))
{
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::nrow () const
{
    return data().nrow();
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::ncol () const
{
    return data().ncol();
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::nnz () const
{
    return data().nnz();
}
template <class T>
inline
void
ssk<T>::solve(const vec<T>& b, vec<T>& x) const
{
    data().solve(b,x);
}
template <class T>
inline
void
ssk<T>::factorize_ldlt ()
{
    data().factorize_ldlt();
}

//  ! _RHEOLEF_HAVE_SPOOLES
#elif defined(_RHEOLEF_HAVE_TAUCS)
template<class T>
class taucs_rep : public occurence {
public:
        typedef unsigned int size_type;
        typedef T            element_type;
        taucs_rep ();
        taucs_rep (const csr<element_type>&);
        taucs_rep (const taucs_rep<T>&);
        ~taucs_rep();
        size_type nrow () const;
        size_type ncol () const;
        size_type nnz () const;
        void solve(const vec<element_type>& b, vec<element_type>& x) const;
        void factorize_ldlt();
// data:
protected:
        void *_p;
private:
};
template<class T>
class ssk : smart_pointer<taucs_rep<T> > {
public:
// typedefs:

	typedef taucs_rep<T>::size_type    size_type;
	typedef T                          element_type;

// allocators/deallocators:

	ssk ();
	explicit ssk<T> (const csr<T>&);

// accessors:

	size_type nrow () const;
	size_type ncol () const;
	size_type nnz  () const;
    
// factorisation and solver:

        void solve(const vec<T>& b, vec<T>& x) const;
	vec<T> solve(const vec<T>& b) const;
	void factorize_ldlt();
protected:
	const taucs_rep<T>& data() const {
		return smart_pointer<taucs_rep<T> >::data();
	}
};
template <class T>
ssk<T> ldlt (const csr<T>& m);
// ===============================[ INLINED ]====================================
template <class T>
inline
ssk<T>::ssk ()
 : smart_pointer<taucs_rep<T> > (new_macro(taucs_rep<T>))
{
}
template <class T>
inline
ssk<T>::ssk (const csr<T>& a)
 : smart_pointer<taucs_rep<T> > (new_macro(taucs_rep<T> (a)))
{
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::nrow () const
{
    return data().nrow();
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::ncol () const
{
    return data().ncol();
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::nnz () const
{
    return data().nnz();
}
template <class T>
inline
void
ssk<T>::solve(const vec<T>& b, vec<T>& x) const
{
    data().solve(b,x);
}
template <class T>
inline
void
ssk<T>::factorize_ldlt ()
{
    data().factorize_ldlt();
}
//  ! _RHEOLEF_HAVE_TAUCS
#elif defined(_RHEOLEF_HAVE_UMFPACK)

template<class T>
class umfpack_rep {
    	void *_p;
public:
	typedef unsigned int size_type;
	typedef T        element_type;
	umfpack_rep ();
	umfpack_rep (const csr<element_type>&);
	~umfpack_rep();
	size_type nrow () const;
	size_type ncol () const;
	size_type nnz () const;
        void solve(const vec<element_type>& b, vec<element_type>& x) const;
	void factorize();
};
//<ssk:
template<class T>
class ssk : smart_pointer<umfpack_rep<T> > {
public:
// typedefs:

	typedef          T                          element_type;
	typedef typename umfpack_rep<T>::size_type  size_type;

// allocators/deallocators:

	ssk ();
	explicit ssk<T> (const csr<T>&);

// accessors:

	size_type nrow () const;
	size_type ncol () const;
	size_type nnz  () const;
    
// factorisation and solver:

        void solve(const vec<T>& b, vec<T>& x) const;
	vec<T> solve(const vec<T>& b) const;
	void factorize_ldlt();
	void factorize_lu();
protected:
	const umfpack_rep<T>& data() const {
		return smart_pointer<umfpack_rep<T> >::data();
	}
	umfpack_rep<T>& data() {
		return smart_pointer<umfpack_rep<T> >::data();
	}
};
template <class T>
ssk<T> ldlt (const csr<T>& m);
//>ssk:
// ===============================[ INLINED ]====================================
template <class T>
inline
ssk<T>::ssk ()
 : smart_pointer<umfpack_rep<T> > (new_macro(umfpack_rep<T>))
{
}
template <class T>
inline
ssk<T>::ssk (const csr<T>& a)
 : smart_pointer<umfpack_rep<T> > (new_macro(umfpack_rep<T> (a)))
{
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::nrow () const
{
    return data().nrow();
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::ncol () const
{
    return data().ncol();
}
template <class T>
inline
typename ssk<T>::size_type
ssk<T>::nnz () const
{
    return data().nnz();
}
template <class T>
inline
void
ssk<T>::solve(const vec<T>& b, vec<T>& x) const
{
    data().solve(b,x);
}
template <class T>
inline
void
ssk<T>::factorize_ldlt ()
{
    data().factorize();
}
template <class T>
inline
void
ssk<T>::factorize_lu ()
{
    data().factorize();
}
template <class T>
inline
ssk<T>
lu (const csr<T>& m)
{
    ssk<T> a(m);
    a.factorize_lu();
    return a;
}

//       ! _RHEOLEF_HAVE_UMFPACK
#else // ! UMF TAUCS SPOOLES...
template<class T>
class ssk {
public:
// allocators/deallocators:

	ssk ();
	explicit ssk (const csr<T>&);

// factorisation LDTt and solver:

        void solve(const vec<T>& b, vec<T>& x) const;
	vec<T> solve(const vec<T>& b) const;
	void factorize_ldlt ();

// accessors:

	unsigned int nrow () const { return _ISKY.size()-1; }
	unsigned int ncol () const { return nrow(); }
	unsigned int nnz () const { return _ASKY.size(); }
	typedef typename Array<unsigned int>::const_iterator const_iterator_isky;
	typedef typename Array<T>::const_iterator            const_iterator_asky;
	const_iterator_isky begin_isky () const { return _ISKY.begin(); }
	const_iterator_isky end_isky () const   { return _ISKY.end(); }
	const_iterator_asky begin_asky () const { return _ASKY.begin(); }
	const_iterator_asky end_asky () const   { return _ASKY.end(); }
    
// output:

	std::ostream& dump(std::ostream&) const;

// internal accessors:
private:
        // index in ASKY of the A(i,j) element, colmin(i) <= j <= i
	unsigned int index_a(unsigned int i, unsigned int j) const
	  { return _ISKY (i+1) - i + j - 1; }
        
	// value of the A(i,j) element, colmin(i) <= j <= i
	const T& operator () (unsigned int i, unsigned int j) const
	  { return _ASKY (index_a(i,j)); }
	T& operator () (unsigned int i, unsigned int j)
	  { return _ASKY (index_a(i,j)); }
	
	// index in ASKY of the first element of the i-th row
	unsigned int index_colmin(unsigned int i) const
	  { return _ISKY (i); }

	// column index j of the element asky(q) in the i-th row
	unsigned int col(unsigned int i, unsigned int q) const
	  { return q - _ISKY (i+1) + i + 1; }

	// column index j of the first element of the i-th row
	unsigned int colmin(unsigned int i) const
	  { return col(i, index_colmin(i)); }

	// index in ASKY of the i-th diagonal element
	unsigned int index_diag(unsigned int i) const
	  { return _ISKY (i+1) - 1; }
// data:
private:
	Array<T>            _ASKY ;
	Array<unsigned int> _ISKY;
	permutation         _p;
};
template<class T>
ssk<T>
ldlt (const csr<T>& m);
#endif // ! _RHEOLEF_HAVE_SPOOLES && !_RHEOLEF_HAVE_TAUCS

template <class T>
inline
vec<T>
ssk<T>::solve (const vec<T>& b) const
{ 
    vec<T> x(b.n());
    solve(b,x);
    return x;
}
template <class T>
inline
ssk<T>
ldlt (const csr<T>& m)
{
    ssk<T> a(m);
    a.factorize_ldlt();
    return a;
}
}// namespace rheolef
#endif /* _SKIT_SSK_H */