This file is indexed.

/usr/include/rheolef/macros.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# ifndef _SKIT_MACROS_H
# define _SKIT_MACROS_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
//
//    macros
//
//    author: P. Saramito
//
//    date: 16 january 1997
//
namespace rheolef { 
typedef std::vector<int>::size_type Index;

inline Index min_value(const Index&) { return 0; }
inline Index max_value(const Index&) { return std::numeric_limits<Index>::max(); }

inline int   min_value(const int&)   { return std::numeric_limits<int>::min(); }
inline int   max_value(const int&)   { return std::numeric_limits<int>::max(); }

inline float  min_value(const float&)  { return std::numeric_limits<float>::min(); }
inline float  max_value(const float&)  { return std::numeric_limits<float>::max(); }

inline Float  min_value(const Float&)  { return std::numeric_limits<Float>::min(); }
inline Float  max_value(const Float&)  { return std::numeric_limits<Float>::max(); }

// ==================================[ numerics ]=====================================

// avoid problem with abs and fabs...
template <class T>
inline T xabs (T x) { return (x >= T(0) ? x : -x); }
template<>
inline Index xabs (Index x)  { return x; }

#ifndef _RHEOLEF_HAVE_ISINF_DOUBLE
#   if defined(_RHEOLEF_HAVE_FINITE_DOUBLE) && defined(_RHEOLEF_HAVE_ISNAN_DOUBLE)
      template <class T>
      inline bool xisinf (T x) { return ! (finite (x) || isnan (x)); }
#   else
      template <class T>
      inline bool xisinf (T x) { return x >= max_value(x) || x <= -max_value(x); }
#   endif
#else // ! _RHEOLEF_HAVE_ISINF_DOUBLE
    template <class T>
    inline bool xisinf (T x) { return isinf(x); } 
#endif // _RHEOLEF_HAVE_ISINF_DOUBLE

#ifdef _RHEOLEF_HAVE_DOUBLEDOUBLE
    template <>
    inline bool xisinf (doubledouble x) { return x != x; } 
#endif // ! _RHEOLEF_HAVE_DOUBLEDOUBLE

template<>
inline bool xisinf (int x) { return false; } 
template<>
inline bool xisinf (Index x) { return false; } 


#ifndef _RHEOLEF_HAVE_ISNAN_DOUBLE
template <class T>
inline bool xisnan (T x) { return false; } 
# else
template <class T>
inline bool xisnan (T x) { return isnan(x); }
#endif
template<>
inline bool xisnan (int x) { return false; } 
template<>
inline bool xisnan (Index x) { return false; } 

template <class T>
inline bool xfinite (T x) { return !xisinf(xabs(x)) && !xisnan(xabs(x)); }

template <class T>
inline bool xisint (T x) { return Float(int(x)) == x; } 
template<>
inline bool xisint (int x) { return true; } 
template<>
inline bool xisint (Index x) { return true; } 

template<class T>
inline T  xmax (T x, T y)  { return (x > y ? x : y); }
template<class T>
inline T  xmin (T x, T y)  { return (x > y ? y : x); }

// TODO: loops may be put in a macro.c file ! (if not code will bulrp)

#ifdef TO_CLEAN
//use copy(a,n,lambda) !
template <class InputIterator, class OutputIterator, class Size>
inline
void
Copy (InputIterator a, OutputIterator b, Size n) { 
	if (!n) return; 
	InputIterator  *p = a+n-1; 
	OutputIterator *q = b+n-1; 
	while (p >= a) *q-- = *p--; 
}

//use fill_n(a,n,lambda) !
template <class T1, class T2>
inline void Set (T1* a, Index n, T2 lambda)
	{ if (!n) return; T1 *p = a+n-1; while (p >= a) *p-- = lambda; }
#endif // TO_CLEAN

template <class T>
inline
T* 
Dup (const T* a, Index n)
	{ if (!n) return 0; const T *b = new_tab_macro(T,n); copy(a,a+n,b); return b; }

template <class InputIterator1, class InputIterator2, class OutputIterator, class Size>
inline
void
Cat (InputIterator1 a, Size n1, InputIterator2 b, Size n2, OutputIterator c)
	{ copy(a,a+n1,c); copy(b,b+n2,c+n1); }

}// namespace rheolef
#endif // _SKIT_MACROS_H