This file is indexed.

/usr/include/rheolef/field.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
# ifndef _RHEO_FIELD_H
# define _RHEO_FIELD_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

namespace rheolef { 
struct field_on_domain;
struct field_component;
struct const_field_component;
}// namespace rheolef

#include "rheolef/vec.h"
#include "rheolef/space.h"
#include "rheolef/form_diag.h"
#include "rheolef/tensor.h"

namespace rheolef { 
//<field:  
/*Class:field
NAME:  @code{field} - piecewise polynomial finite element field
DESCRIPTION:       
  @noindent
  Store degrees of freedom associated to a mesh and
  a piecewise polynomial approximation, with respect
  to the numbering defined by the underlying @ref{space class}.

  @noindent
  This class contains two vectors, namely unknown and blocked
  degrees of freedoms, and the associated finite element space.
  Blocked and unknown degrees of freedom can be set by using
  domain name indexation:
  @example
        geo omega_h ("circle");
        space Vh (omega_h, "P1");
        Vh.block ("boundary");
        field uh (Vh);
        uh ["boundary"] = 0;
  @end example
  Interpolation of a function @code{u} in a field @code{uh} with respect to 
  the interpolation writes:
  @example
        Float u (const point&);
        uh = interpolate (Vh, u);
  @end example

EXAMPLE:
  Here is a complete example
  using the field class:
@example
        Float u (const point& x) @{ return x[0]*x[1]; @}
        main() @{
          geo omega_h ("square");
          space Vh (omega_h, "P1");
          field uh (Vh);
          uh = interpolate (Vh, u);
          cout << plotmtv << u;
        @}
@end example
FEATURES:
   Algebra, such as x+y, x*y, x/y, lambda*x, ...are supported
   
   Transformations applies to all values of a field:
@example
   field vh = compose(fabs, uh);
   field wh = compose(atan2, uh, vh);
@end example
   The composition supports also general unary and binary class-functions.

   Vector-valued and tensor-valued field support is yet partial only.
   This feature will be more documented in the future.

AUTHOR: 
    LMC-IMAG, 38041 Grenoble cedex 9, France
   | Pierre.Saramito@imag.fr
   | Jocelyn.Etienne@imag.fr
DATE:   2 july 1997  update: 22 may 2010
METHODS: @field
End:
*/


class field : public std::unary_function<point,Float> {
public :
// typedefs:

    typedef vec<Float>::size_type size_type;
    typedef geo::plot_options plot_options;

// allocator/deallocator:
  
    field ();
    explicit field (const space& V, const Float& init_value = std::numeric_limits<Float>::max());
    explicit field (const space& V, std::istream& is);
    explicit field (const std::string& filename);
    explicit field (const space& V, const std::string& filename);
    explicit field (const class form_diag& D);
             field (const field_component& ui);
             field (const const_field_component& ui);
	      //! copy field v into the space V with different blocked/unknown dofs.
	     field (const space& V, const field& v);

    // return the field on an optimized mesh
    friend field adapt (const class field& criteria, const Float& hcoef);
    friend field adapt (const class field& criteria, const adapt_option_type& = adapt_option_type());

// accessors:

    size_type  size() const;
    size_type  n_unknown() const;
    size_type  n_blocked() const;
    size_type  dimension() const;
    std::string coordinate_system() const;
    fem_helper::coordinate_type coordinate_system_type() const;
    std::string get_approx(size_type i_comp=0) const;
    const space&  get_space() const;
    const geo&    get_geo() const;
    Float min() const;
    Float max() const;
    Float max_abs() const;

// accessor: val := uh(x) and such

    Float  operator()      (const point& x, size_type i_comp = 0) const;
    point  vector_evaluate (const point& x) const;
    tensor tensor_evaluate (const point& x) const;

    void evaluate (const point& x, Float& result) const;
    void evaluate (const point& x, point& result) const;
    void evaluate (const point& x, tensor& result) const;

//! accessors & modifiers by components, or vector & tensor valued:
//!       Float  u = uh.at (i_dof);
//!       point  v = vh.vector_at (i_dof);
//!       tensor m = mh.tensor_at (i_dof);

    Float  at            (size_type i_dof) const;
    Float& at            (size_type i_dof);

          Float  at      (size_type i_dof, size_type i_comp) const;
    const Float& set_at  (size_type i_dof, size_type i_comp, const Float& value);
          void   incr_at (size_type i_dof, size_type i_comp, const Float& value);

          point  vector_at      (size_type i_dof) const;
    const point& set_vector_at  (size_type i_dof, const point& value);
          void incr_vector_at (size_type i_dof, const point& value);

          tensor  tensor_at      (size_type i_dof) const;
    const tensor& set_tensor_at  (size_type i_dof, const tensor& value);
          void    incr_tensor_at (size_type i_dof, const tensor& value);

// assignment: u = lambda; u = v[i];

    field operator = (Float lambda);
    field operator = (const field_component&);
    field operator = (const const_field_component&);

// computed assignment: u op= lambda;

    field operator *= (Float lambda);
    field operator /= (Float lambda);
    field operator += (const field& f);
    field operator -= (const field& f);

// assignment to a domain:  u [dom] := value;

    field_on_domain operator [] (const domain& dom);
    field_on_domain operator [] (const std::string& dom_name);

// multi-field accessors: field[i], field(i,j), field(i,j,k,l)

    size_type n_component() const;
    field_component operator [] (size_type i_comp);
    field_component operator () (size_type i_comp, size_type j_comp);
    field_component operator () (size_type i, size_type j, size_type k, size_type l);
    const_field_component operator [] (size_type i_comp) const;
    const_field_component operator () (size_type i_comp, size_type j_comp) const;
    const_field_component operator () (size_type i, size_type j, size_type k, size_type l) const;

    std::string get_valued() const; // "scalar", "vector", "tensor", "tensor4"...
    fem_helper::valued_field_type get_valued_type() const;

// input/output:

    friend std::ostream& operator << (std::ostream& s, const field& x);
    friend std::istream& operator >> (std::istream& s, field& x);
    void save (std::string basename = std::string(), std::string username = std::string()) const;
    void put_vtk (std::ostream& s,
	const std::string& name = "scalars", bool put_header = true) const;
    std::ostream& put_vtk_vector (std::ostream& vtk,
    	const std::string& name = "vectors", bool put_header = true) const;
    std::ostream& put_vtk_tensor (std::ostream& vtk,
    	const std::string& name = "tensors", bool put_header = true) const;
    void check () const;
    int gnuplot2d_velocity (const std::string& basename, plot_options& opt) const;
 
// specific:

    	//! Transforms a P_k continuous on subdomains to a P_k discontinuous (currently k=1 only)
    field piecewise_to_discontinuous() const;

// implementation:
    	//! change to use tangential-normal representation locally 
    void set_locked_boundaries ();   
        //! change to use cartesian/cylindrical representation everywhere
    void unset_locked_boundaries (); 
    bool locked_boundaries_set () const { return _locked_boundaries_set; }

protected:

    friend std::istream& load_scalar_field (std::istream&, field&);
    friend std::istream& load_multi_field  (std::istream&, field&);

    std::ostream& put (std::ostream& s) const;
    std::ostream& put_scalar (std::ostream& s) const;
    std::ostream& put_multi (std::ostream& s) const;
    int plotmtv2d_P2 (const std::string& basename, bool execute, bool clean, bool verbose, 
		      bool grid = false, bool domains=false,
		      bool fill = false, bool elevation = false,
		      bool label = false,
		      size_type isovalue_table_zero_index = std::numeric_limits<size_type>::max()) const;
    int plotmtv2d_P1d(const std::string& basename, bool execute, bool clean, bool verbose, 
		      bool grid = false, bool domains=false,
		      bool fill = false, bool elevation = false,
		      bool label = false,
		      size_type isovalue_table_zero_index = std::numeric_limits<size_type>::max()) const;
    int plotmtv2d_P1 (const std::string& basename, bool execute, bool clean, bool verbose,
		      bool grid = false, bool domains=false,
		      bool fill = false, bool elevation = false,
		      bool label = false,
		      size_type isovalue_table_zero_index = std::numeric_limits<size_type>::max()) const;
    int plotmtv2d_P0 (const std::string& basename, bool execute, bool clean, bool verbose,
		      bool grid = false, bool domains=false,
		      bool fill = false, bool elevation = false) const;

    int plotmtv1d_P2 (const std::string& basename, bool execute, bool clean, bool verbose
		     ) const;
    int plotmtv1d_P1 (const std::string& basename, bool execute, bool clean, bool verbose
		     ) const;

    std::ostream& put_vtk_2d_elevation_P1 (std::ostream& vtk) const;

    int plotmtv_deformation_P1 (const std::string& basename, bool execute, bool clean, 
		     bool verbose, const Float& vscale) const;

    int vtk_deformation (const std::string& basename, bool execute, bool clean,
		     bool verbose, const Float& vscale) const;

    int plotmtv_velocity (const std::string& basename, bool execute, bool clean, 
		     bool verbose, const Float& vscale, bool put_domains) const;
    int vtk_velocity (const std::string& basename, bool execute, bool clean, 
		     bool verbose, const Float& vscale) const;

public: 
    // some low-level outputs:
    void extract_line_path (const std::vector<size_t>& mask, std::vector<point>& x, std::vector<Float>& y) const;
    void put_gnuplot1d_data (std::ostream& gdat) const;
protected: 
    int gnuplot1d    (const std::string& basename, bool execute, bool clean, bool verbose
	    	     ) const;
    int gnuplot2d_elevation (const std::string& basename, plot_options& opt) const;
    int vtk2d_Pk     (const std::string& basename, bool execute, bool clean, bool verbose,
		      bool grid = false, bool fill = false) const;
    int vtk3d_Pk     (const std::string& basename, bool execute, bool clean, bool verbose
		     ) const;
    int vtk_elevation   (const std::string& basename, bool execute, bool clean, bool verbose,
		      bool grid = false, bool fill = false) const;

    field cut        (const std::string& basename, bool execute, bool clean, bool verbose,
    		      point normal, point origin) const ;
    geo iso          (const std::string& basename, bool execute, bool clean, bool verbose,
    		      const Float value) const;

    // file format conversion
    std::istream& get_bamg_mbb (std::istream& in);
    std::ostream& put_bamg_mbb (std::ostream& out) const;

    std::istream& get_bamg_metric (std::istream& in);
    std::ostream& put_bamg_metric (std::ostream& out) const;

    std::istream& get_cemagref (std::istream& in);
    std::ostream& put_cemagref (std::ostream& out) const;

    std::ostream& put_gmsh (std::ostream& out) const;

    std::istream& get_mmg3d_metric (std::istream& in);
    std::ostream& put_mmg3d_metric (std::ostream& out) const;
    std::ostream& put_yams_metric (std::ostream& out) const;
public :

// low level accessors:

    void get_dof_value (const basis& b, const geo_element& K,
		tiny_vector<Float>& dofv, size_type i_comp = 0) const;
    void get_dof_value_from_global (const basis& b, const geo_element& K,
		tiny_vector<Float>& dofv, size_type i_comp = 0) const;
     //! same but with K defined in the global mesh
    Float evaluate (const meshpoint& S, size_type i_comp = 0) const;
    void  evaluate (const meshpoint& S, point& result) const;
    Float evaluate_d_dxi (size_type i, const meshpoint& S, size_type i_comp=0) const;
    Float evaluate (const point& x_hat, size_type e, size_type i_comp = 0) const
		{ return evaluate(meshpoint(x_hat,e), i_comp); }

// obsolete:

    void boundary_val( const field&  y,
                       size_type     num_cmp,
                       const domain& d);
    void boundary_val( const field&  y, 
		       size_type     num_cmp,
		       const std::string& dom_name);
    void boundary_val( Float         lambda,
		       size_type     num_cmp,
		       const domain& d);
    void boundary_val( Float         lambda,
		       size_type     num_cmp,
		       const std::string& dom_name) ;
    void boundary_val( Float         (*f)(const point& x),
	 	       const space&  V0, 
		       size_type     num_cmp,
		       const std::string& dom_name);
    void from_boundary_val( const field&  y, 
		       size_type     i_comp,
		       const domain& d);
    field get_comp(const space& X_h, size_type i_comp=0) const; 

    friend class branch;

// data
protected:
    space       _V;
    bool	_locked_boundaries_set;
public :
    vec<Float> u, b;
};
// interpolation:
template <class Function> field interpolate (const space& V, Function f);
template <> field interpolate (const space& V, field uh);

// linear algebra (partial)
field operator - (const field& x);
field operator + (const field& x, const field& y);
field operator + (const Float& lambda, const field& x);
field operator + (const field& x, const Float& lambda);
field operator - (const field& x, const field& y);
field operator - (const Float& lambda, const field& x);
field operator - (const field& x, const Float& lambda);
field operator * (const field& x, const field& y);
field operator * (const Float& lambda, const field& x);
field operator * (const field& x, const Float& lambda);
field operator / (const field& x, const field& y);
field operator / (const Float& lambda, const field& x);
field operator / (const field& x, const Float& lambda);
field sqr (const field& x);
field sqrt (const field& x);
field abs (const field& x);
field pow (const field& x, Float alpha);
Float dot (const field& x, const field& y);
Float norm (const field& x); 
Float max_abs (const field& x); 

//! for a multi-field, returns field = sqrt(sum u(x_i)^2)
field euclidian_norm (const field& u);
field euclidian_norm2 (const field& u);

//! for a tensor field, returns field: sqrt(tau(0,0)^2+2*tau(0,1)^2+..)
field tensor_norm (const field& tau);

// general field & function composition:
// v(x) := f(u(x)) <==> v := compose(f,u)
//                 <==> transform(u,f,v)  : STL-like style
template<class Function>
field compose (Function f, const field& u);
field compose (Float (*f)(const Float&), const field& u);
template<class Function>
void transform (const field& u, Function f, field& v);
void transform (const field& u, Float (*f)(const Float&), field& v);
// supported for backward compatibility purpose, use compose instead:
template<class Function>
field transform (const field& u, Function f);
field transform (const field& u, Float (*f)(const Float&));

// w(x) := f(u(x),v(x)) <==> w := compose(f,u,v)
//                      <==> transform(u,v,f,w)  : STL-like style
template<class Function>
field compose (Function f, const field& u, const field& v);
field compose (Float (*f)(const Float&, const Float&), const field& u, const field& v);
template<class Function>
void transform (const field& u, const field& v, Function f, field& w);
void transform (const field& u, const field& v, Float (*f)(const Float&), field& w);

field trans (const field& tau); // tensor field transposition
field tensor_symmetrize (const space& Sh, const field& tau); 
// when tau is unsymmetric_tensor and Sh is symmetric tensor

// obsolete: concatenation on a product space
field fld_cat2(const field& f1, const field& f2) ;
field fld_cat3(const field& f1, const field& f2, const field& f3) ;

// vector_field & tensor_field:
struct vector_field : std::unary_function<point,point> {
  vector_field(const field& uh);
  point operator() (const point& x) const;
protected:
  field    _uh;
};
struct tensor_field : std::unary_function<point,tensor> {
  tensor_field(const field& mh);
  tensor operator() (const point& x) const;
protected:
  field    _mh;
};
//>field:
// ------------------------------------------------------------------
// vector_field & tensor_field:
// ------------------------------------------------------------------
inline
vector_field::vector_field (const field& uh)
  : std::unary_function<point,point>(), _uh(uh)
{
}
inline
tensor_field::tensor_field (const field& mh)
  : std::unary_function<point,tensor>(), _mh(mh)
{
}
inline
point
vector_field::operator() (const point& x) const
{
    return _uh.vector_evaluate(x);
}
inline
tensor
tensor_field::operator() (const point& x) const 
{
    return _mh.tensor_evaluate(x);
}

}// namespace rheolef

// ------------ inline'd -----------------------------------

#include "rheolef/interpolate.h" // templatized interpolate(V,class_fct)

namespace rheolef { 

inline 
field::field ()
: _V(), _locked_boundaries_set(false), u(), b()
{
}

inline 
field::field (const space& V, const Float& init_value)
: _V(V), _locked_boundaries_set(false), u(), b()
{
   _V.freeze();
   u.resize(V.n_unknown(), init_value);
   b.resize(V.n_blocked(), init_value);
}
inline
field::size_type
field::dimension() const 
{
    return _V.dimension();
}
inline
std::string
field::coordinate_system() const 
{
    return _V.coordinate_system();
}
inline
fem_helper::coordinate_type
field::coordinate_system_type() const 
{
    return _V.coordinate_system_type();
}
inline
field::size_type
field::n_component() const 
{
    return _V.n_component();
}
inline
const space&
field::get_space() const 
{
    return _V;
}

inline
const geo&
field::get_geo() const 
{
    return _V.get_geo();
}

inline
field::size_type
field::size() const
{
    return _V.size();
}

inline
field::size_type 
field::n_unknown() const
{
    return u.size();
}

inline
field::size_type 
field::n_blocked() const
{
    return b.size();
}

inline
Float 
field::min() const
{
    return xmin(u.min(), b.min());
}
inline
Float 
field::max() const
{
    return xmax(u.max(), b.max());
}
inline
Float 
field::max_abs() const
{
    return xmax(u.max_abs(), b.max_abs());
}
inline
std::string
field::get_approx(size_type i_comp) const
{
    return _V.get_approx(i_comp);
}
template<class Function>
inline
void
transform (const field& x, Function f, field& y)
{
    transform(x.u.begin(), x.u.end(), y.u.begin(), f);
    transform(x.b.begin(), x.b.end(), y.b.begin(), f);
}
inline
void
transform (const field& x, Float (*f)(const Float&), field& y)
{
    transform(x.u.begin(), x.u.end(), y.u.begin(), f);
    transform(x.b.begin(), x.b.end(), y.b.begin(), f);
}
template <class Function>
inline
field
compose (Function f, const field& x)
{
    field y (x.get_space());
    transform (x, f, y);
    return y;
}
inline
field
compose (Float (*f)(const Float&), const field& x)
{
    field y (x.get_space());
    transform (x, f, y);
    return y;
}
template <class Function>
inline
field
transform (const field& x, Function f)
{
    warning_macro("vh = transform(uh,f) is obsolete: please, use vh = compose(f,uh) instead.");
    return compose(f,x);
}
inline
field
transform (const field& x, Float (*f)(const Float&))
{
    warning_macro("vh = transform(uh,f) is obsolete: please, use vh = compose(f,uh) instead.");
    return compose(f,x);
}
template<class Function>
inline
void
transform (const field& x, const field& y, Function f, field& z)
{
    transform(x.u.begin(), x.u.end(), y.u.begin(), z.u.begin(), f);
    transform(x.b.begin(), x.b.end(), y.b.begin(), z.b.begin(), f);
}
inline
void
transform (const field& x, const field& y, Float (*f)(const Float&, const Float&), field& z)
{
    transform(x.u.begin(), x.u.end(), y.u.begin(), z.u.begin(), f);
    transform(x.b.begin(), x.b.end(), y.b.begin(), z.b.begin(), f);
}
template <class Function>
inline
field
compose (Function f, const field& x, const field& y)
{
    field z (x.get_space());
    transform (x, y, f, z);
    return z;
}
inline
field
compose (Float (*f)(const Float&, const Float&), const field& x, const field& y)
{
    field z (x.get_space());
    transform (x, y, f, z);
    return z;
}
inline
void
field::boundary_val(const field&   y,
                     size_type     num_cmp,
                     const std::string& dom_name)
{
    const geo& g = get_geo();
    boundary_val (y, num_cmp, g[dom_name]);
}
inline
void
field::boundary_val( Float 	   lambda,
                     size_type     num_cmp,
                     const std::string& dom_name)
{
    const geo& g = get_geo();
    boundary_val (lambda, num_cmp, g[dom_name]);
}
inline 
Float 
norm (const field& x)
{
    return ::sqrt(dot(x,x));
}
inline 
Float 
max_abs (const field& x)
{
    return x.max_abs();
}
inline 
field 
euclidian_norm (const field& x)
{
    return sqrt(euclidian_norm2(x));
}
inline
field
adapt (const class field& c,
        const Float& hcoef)
{
  adapt_option_type opt;
  opt.hcoef = hcoef;
  return adapt (c, opt);
}
inline
fem_helper::valued_field_type
field::get_valued_type() const
{
	return _V.get_valued_type();
}
inline
std::string
field::get_valued() const
{
	return _V.get_valued();
}
inline
point
field::vector_evaluate (const point& x) const
{
    point val;
    evaluate (x, val);
    return val;
}
inline
tensor
field::tensor_evaluate (const point& x) const
{
    tensor val;
    evaluate (x, val);
    return val;
}
// -----------------------------------------------------------
// accessors & modifiers by components or vector/tensor valued
// -----------------------------------------------------------
inline
Float
field::at (size_type i_dof) const
{
    size_type idx = _V.index(i_dof);
    if (! _locked_boundaries_set) {
      if (! _V.is_blocked(i_dof))
        return u (idx);
      else
        return b (idx);
    }
    // in that case, we may have to reconstruct cartesian components 
    // from tangential-normal representation
    if (!_V.is_locked(i_dof)) {
    	if (! _V.is_blocked(i_dof))
	  return u (idx);
	else
	  return b (idx);
    } else { 
        // return blocked * n[i_comp] + unknown * t[i_comp], where n=locked_dir 
      	// and t its direct orthogonal vector
        warning_macro ("Calculating value for i_dof " << i_dof);
	if (_V.is_blocked(i_dof)) // <=> i_comp==1
	    return b(idx)*_V.locked_component(i_dof, 1)
	    	+u(_V.index_locked_with(i_dof))*_V.unlocked_component(i_dof, 1);
	else // then i_comp==0
	    return b(_V.index_locked_with(i_dof))*_V.locked_component(i_dof,0)
	    	+u(idx)*_V.unlocked_component(i_dof,0);
    }
}
inline
Float&
field::at (size_type i_dof)
{
    check_macro (!_locked_boundaries_set,
    	"Direct access to field not permitted: use unset_locked_boundaries() first"); 
    size_type idx = _V.index(i_dof);
    if (! _V.is_blocked(i_dof))
        return u (idx);
    else
        return b (idx);
}
inline
Float
field::at (size_type i_dof, size_type i_comp) const
{
  return at (get_space().start(i_comp) + i_dof);
}
inline
const Float&
field::set_at (size_type i_dof, size_type i_comp, const Float& value)
{
  at (get_space().start(i_comp) + i_dof) = value;
  return value;
}
inline
void
field::incr_at (size_type i_dof, size_type i_comp, const Float& value)
{
  at (get_space().start(i_comp) + i_dof) += value;
}
inline
point
field::vector_at (size_type i_dof) const
{
  point value;
  for (size_type i_comp = 0; i_comp < dimension(); i_comp++)
    value[i_comp] = at (i_dof, i_comp);
  return value;
}
inline
const point&
field::set_vector_at (size_type i_dof, const point& value)
{
  check_macro ( get_valued_type() == fem_helper::vectorial ||
	       (get_valued_type() == fem_helper::scalar && dimension() == 1),
	"field::at: vector field expected, get " << get_valued() << " one.");
  for (size_type i_comp = 0; i_comp < n_component(); i_comp++)
    set_at (i_dof, i_comp, value[i_comp]);
  return value;
}
inline
void
field::incr_vector_at (size_type i_dof, const point& value)
{
  for (size_type i_comp = 0; i_comp < dimension(); i_comp++)
    incr_at (i_dof, i_comp, value[i_comp]);
}
inline
tensor
field::tensor_at (size_type i_dof) const
{
  tensor value;
  fem_helper::coordinate_type   sys_coord = coordinate_system_type();
  fem_helper::valued_field_type valued    = get_valued_type();
  check_macro ( get_valued_type() == fem_helper::tensorial ||
	        get_valued_type() == fem_helper::unsymmetric_tensorial ||
	       (get_valued_type() == fem_helper::scalar && dimension() == 1),
	"field.at: tensor field expected, get " << get_valued() << " one.");
  for (size_type i_comp = 0; i_comp < n_component(); i_comp++) {
    fem_helper::pair_size_type ij_comp = fem_helper::tensor_subscript (valued, sys_coord, i_comp);
    value (ij_comp.first, ij_comp.second) = at (i_dof, i_comp);
    if (ij_comp.first != ij_comp.second) {
      value (ij_comp.second, ij_comp.first) = value (ij_comp.first, ij_comp.second);
    }
  }
  return value;
}
inline
const tensor&
field::set_tensor_at (size_type i_dof, const tensor& value)
{
  fem_helper::coordinate_type   sys_coord = coordinate_system_type();
  fem_helper::valued_field_type valued    = get_valued_type();
  check_macro ( get_valued_type() == fem_helper::tensorial ||
	        get_valued_type() == fem_helper::unsymmetric_tensorial ||
	       (get_valued_type() == fem_helper::scalar && dimension() == 1),
	"field.at: tensor field expected, get " << get_valued() << " one.");
  for (size_type i_comp = 0; i_comp < n_component(); i_comp++) {
    fem_helper::pair_size_type ij_comp = fem_helper::tensor_subscript (valued, sys_coord, i_comp);
    set_at (i_dof, i_comp, value(ij_comp.first,ij_comp.second));
  }
  return value;
}
inline
void
field::incr_tensor_at (size_type i_dof, const tensor& value)
{
  fem_helper::coordinate_type   sys_coord = coordinate_system_type();
  fem_helper::valued_field_type valued    = get_valued_type();
  check_macro ( get_valued_type() == fem_helper::tensorial ||
	        get_valued_type() == fem_helper::unsymmetric_tensorial ||
	       (get_valued_type() == fem_helper::scalar && dimension() == 1),
	"field.at: tensor field expected, get " << get_valued() << " one.");
  for (size_type i_comp = 0; i_comp < n_component(); i_comp++) {
    fem_helper::pair_size_type ij_comp = fem_helper::tensor_subscript (valued, sys_coord, i_comp);
    incr_at (i_dof, i_comp, value(ij_comp.first,ij_comp.second));
  }
}
// ---------------------------------------------------------
// u["boundary"] = 0; 		fields on domains...
// ---------------------------------------------------------
struct field_on_domain {
    typedef field::size_type size_type;
    field_on_domain();
    field_on_domain(field& x, const domain& d, size_type i_comp = std::numeric_limits<size_type>::max());
    const Float& operator = (const Float& lambda);
    const field& operator = (const field& y);
    field*    _px;
    domain    _d;
    size_type _i_comp;
};
inline
field_on_domain::field_on_domain()
 : _px(0), _d(), _i_comp(std::numeric_limits<size_type>::max())
{
}
inline
field_on_domain::field_on_domain(field& x, const domain& d, size_type i_comp) 
 : _px(&x), _d(d), _i_comp(i_comp)
{
}
inline
field_on_domain
field::operator [] (const domain& d)
{
    return field_on_domain(*this,d);
}
inline
field_on_domain
field::operator [] (const std::string& dom_name)
{
    const geo& g = get_geo();
    return operator [] (g[dom_name]);
}
// ---------------------------------------------------------
// u[1]["boundary"] = 0; 	multicomponent fields...
// ---------------------------------------------------------
struct field_component {
    typedef field::size_type size_type;
    field_component();
    field_component(field& x, size_type i);
    const Float& operator = (const Float& lambda);
    const field& operator = (const field& y);
    field operator = (const field_component& y);
    field_component& operator += (const field& y);
    field_on_domain operator [] (const std::string& dom_name);
    field_on_domain operator [] (const domain& dom);
    friend std::ostream& operator << (std::ostream& s, const field_component& x);
    friend field operator + (const field_component&, const field_component&);
    friend field operator - (const field_component&, const field_component&);
    friend field operator * (const field_component&, const field_component&);
    friend field operator / (const field_component&, const field_component&);
    friend field compose (Float (*f)(const Float&), const field_component&);
    friend field transform (const field_component&, Float (*f)(const Float&));
    friend void transform (const field_component&, Float (*f)(const Float&), field&);
#ifdef TODO
    template<class Function>
    friend field compose (Function f, const field_component&);
    template<class Function>
    friend field transform (const field_component&, Function f);
    template<class Function>
    friend void transform (const field_component&, Function f, field&);
#endif // TODO
    friend field sqr (const field_component&);
#ifdef TODO
    friend field sqrt(const field_component&);
    friend field abs(const field_component&);
#endif // TODO
    size_type u_size() const;
    size_type b_size() const;
    vec<Float>::const_iterator u_begin() const;
    vec<Float>::const_iterator b_begin() const;
    vec<Float>::const_iterator u_end() const;
    vec<Float>::const_iterator b_end() const;
    vec<Float>::iterator u_begin();
    vec<Float>::iterator b_begin();
    vec<Float>::iterator u_end();
    vec<Float>::iterator b_end();
    field*          _px;
    size_type       _i_comp;
};
inline
field_component::field_component()
 : _px(0), _i_comp(0)
{
}
inline
field_component::field_component(field& x, size_type i)
 : _px(&x), _i_comp(i)
{
}
inline
field_component 
field::operator [] (size_type i_comp)
{
    return field_component (*this, i_comp);
}
inline
field_on_domain
field_component::operator [] (const domain& d)
{
    return field_on_domain(*_px,d,_i_comp);
}
inline
field_on_domain
field_component::operator [] (const std::string& dom_name)
{
    const geo& g = (*_px).get_geo();
    return operator [] (g[dom_name]);
}
// ---------------------------------------------------------
// field w = u[1]*v[0]
// ---------------------------------------------------------
struct const_field_component {
    typedef field::size_type size_type;
    const_field_component();
    const_field_component(const field& x, size_type i);
    const_field_component(const field_component&);
    friend std::ostream& operator << (std::ostream& s, const const_field_component& x);
    friend field operator + (const const_field_component&, const const_field_component&);
    friend field operator - (const const_field_component&, const const_field_component&);
    friend field operator * (const const_field_component&, const const_field_component&);
    friend field operator / (const const_field_component&, const const_field_component&);
    friend field compose (Float (*f)(const Float&), const const_field_component&);
    friend field transform (const const_field_component&, Float (*f)(const Float&));
    friend void transform (const const_field_component&, Float (*f)(const Float&), field&);
#ifdef TODO
    template<class Function>
    friend field compose (Function f, const const_field_component&);
    template<class Function>
    friend void transform (const const_field_component&, Function f, field&);
    template<class Function>
    friend field transform (const const_field_component&, Function f);
#endif // TODO
    friend field sqr (const const_field_component&);
#ifdef TODO
    friend field sqrt(const const_field_component&);
    friend field abs(const const_field_component&);
#endif // TODO
    size_type u_size() const;
    size_type b_size() const;
    vec<Float>::const_iterator u_begin() const;
    vec<Float>::const_iterator b_begin() const;
    vec<Float>::const_iterator u_end() const;
    vec<Float>::const_iterator b_end() const;
    const field*    _px;
    size_type       _i_comp;
};
inline
const_field_component::const_field_component()
 : _px(0), _i_comp(0)
{
}
inline
const_field_component::const_field_component(const field& x, size_type i)
 : _px(&x), _i_comp(i)
{
}
inline
const_field_component::const_field_component(const field_component& x)
 : _px(x._px), _i_comp(x._i_comp)
{
}
inline
const_field_component 
field::operator [] (size_type i_comp) const
{
    return const_field_component (*this, i_comp);
}
inline
field
field::operator += (const field& f)
{
    u += f.u;
    b += f.b;
    return *this;
}
inline
field
field::operator -= (const field& f)
{
    u -= f.u;
    b -= f.b;
    return *this;
}
}// namespace rheolef
# endif /* _RHEO_FIELD_H */