This file is indexed.

/usr/include/rheolef/diag.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# ifndef _SKIT_DIAG_H
# define _SKIT_DIAG_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
/*Class:basic_diag
NAME: @code{basic_diag} - diagonal matrix 
@clindex basic_diag
@clindex vec
@cindex diagonal matrix
DESCRIPTION:       
 The class implements a diagonal matrix.
 A declaration whithout any parametrers correspond to a null size matrix:
 @example
     	basic_diag<Float> d;
 @end example
 @noindent
 The constructor can be invocated whith a size parameter:
 @example
     	basic_diag<Float> d(n);
 @end example
 @noindent
 or an initialiser, either a vector (@pxref{vec class}):
 @example
     	basic_diag<Float> d = basic_diag(v);
 @end example
 @noindent
 or a csr matrix @pxref{csr class}:
 @example
     	basic_diag<Float> d = basic_diag(a);
 @end example
 @noindent
 The conversion from @code{basic_diag} to
 @code{vec} or @code{csr} is explicit.

 @noindent
 When a diagonal matrix is constructed from a @code{csr} matrix,
 the definition of the diagonal of matrix is @emph{always} a vector of size 
 @var{nrow}
 which contains the elements in rows 1 to @var{nrow} of
 the matrix that are contained in the diagonal.
 If the diagonal element falls outside the matrix,
 i.e. @var{ncol} < @var{nrow} then it is
 defined as a zero entry. 

NOTE:
 Since the @code{basic_diag} class derives from the 
 @code{vec},  the @code{basic_diag} class
 present also a STL-like interface.
 
AUTHOR: 
    Pierre Saramito
    | Pierre.Saramito@imag.fr
    LMC-IMAG, 38041 Grenoble cedex 9, France
DATE:   28 january 1997

End:
*/
# include "rheolef/vec.h"
# include "rheolef/csr.h"
# include "rheolef/blas1-dense.h"
namespace rheolef { 
//<basic_diag:
template<class T>
class basic_diag : public vec<T> {
public:

// typedefs:

    typedef typename vec<T>::element_type element_type;
    typedef typename vec<T>::size_type    size_type;
    typedef typename vec<T>::iterator     iterator;

// allocators/deallocators:

    explicit basic_diag (size_type sz = 0);
    explicit basic_diag (const vec<T>& u);
    explicit basic_diag (const csr<T>& a);

// assignment:
  
    basic_diag<T> operator = (const T& lambda);

// accessors:
	
    size_type nrow () const { return vec<T>::size(); }
    size_type ncol () const { return vec<T>::size(); }

// basic_diag as a preconditionner: solves D.x=b

    vec<T> solve (const vec<T>& b) const;
    vec<T> trans_solve (const vec<T>& b) const;
};
template <class T> 
basic_diag<T> dcat (const basic_diag<T>& a1, const basic_diag<T>& a2);

template <class T>
basic_diag<T> operator / (const T& lambda, const basic_diag<T>& d);

template <class T>
vec<T>
operator * (const basic_diag<T>& d, const vec<T>& x);

template<class T>
vec<T> left_div (const vec<T>& x, const basic_diag<T>& d);
//>basic_diag:

// =============== inline'd =====================================

template <class T>
inline
basic_diag<T>::basic_diag (size_type sz)
  : vec<T>(sz)
{
}
template <class T>
inline
basic_diag<T>::basic_diag (const vec<T>& u)
  : vec<T>(u)  
{
}
template <class T>
inline
basic_diag<T>::basic_diag (const csr<T>& a)
  : vec<T>(a.nrow())
{
    size_type i = 0;
    iterator iter = vec<T>::begin();
    iterator last = vec<T>::end();
    while (iter < last) {
	*iter = a(i,i);
	++iter;
	++i;
    }
}
template <class T>
inline
basic_diag<T>
basic_diag<T>::operator = (const T& lambda)
{
    fill (vec<T>::begin(), vec<T>::end(), lambda);
    return *this;
}
template <class T>
inline
basic_diag<T>
dcat (const basic_diag<T>& a1, const basic_diag<T>& a2)
{
  basic_diag<T> a(a1.size()+a2.size()) ;
  Cat(a1.begin(),a1.size(),a2.begin(),a2.size(),a.begin()) ; 
  return a ;
}
template <class T>
inline
basic_diag<T>
operator / (const T& lambda, const basic_diag<T>& d)
{
    return basic_diag<T> (lambda/(vec<T>(d)));
}
template <class T>
inline
vec<T>
operator *(const basic_diag<T>& d, const vec<T>& x)
{
    return (vec<T>(d)) * x;
}
template <class T>
inline
vec<T>
basic_diag<T>::solve (const vec<T>& b) const
{
    return b / (vec<T>(*this));
}
template <class T>
inline
vec<T>
basic_diag<T>::trans_solve (const vec<T>& b) const
{
    return b / (vec<T>(*this));
}
template<class T>
inline
vec<T>
left_div (const vec<T>& x, const basic_diag<T>& d)
{
  return x/(vec<T>(d)) ; 
}
}// namespace rheolef
# endif /* _SKIT_DIAG_H */