This file is indexed.

/usr/include/rheolef/csr-algorithm.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# ifndef _SKIT_CSR_ALGORITHM_H
# define _SKIT_CSR_ALGORITHM_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
//
// CSR: Compressed Sparse Row format
//
// algorithm-oriented generic library
// inspired from sparskit2 fortran library
//
// triangular part extraction
// and sort by increasing column order
//
// author: Pierre.Saramito@imag.fr
//
// date: 4 september 1997
//
//@!\vfill\listofalgorithms

/*@! 
 \vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
  \caption{{\tt tril, triu}: get lower, upper triangular part}
  \begin{algorithmic}
    \NOTE {this algorithm is in-place: {\tt tril} (ia, ja, a, ia, ja, a).}
      Current implementation uses use a predicate operator as parameter.
    \ENDNOTE
    \INPUT {the matrix in CSR format}
      ia(0:nrow), ja(0:nnz-1), a(0:nnz-1)
    \ENDINPUT
    \OUTPUT {non-null elements in selected part}
      il(0:nrow), jl(0:nnzl-1), l(0:nnzl-1)
    \ENDOUTPUT
    \BEGIN 
      q := 0 \\
      \FORTO {i := 0} {nrow-1}
	qold := q \\
        \FORTO {p := ia(i)} {ia(i+1)-1} 
	  \IF {ja(p) $\leq$ i}
	    jl (q) := ja(p) \\
            l  (q) := a(p)  \\
	    q++
          \ENDIF
        \ENDFOR
	il (i) := qold;
      \ENDFOR
      il (n) := q
    \END
 \end{algorithmic} \end{algorithm}
 \vfill
 {\bf Implementation Note} \\
  A {\tt BinaryPredicate} argument is required for the selected part of the matrix.
  Uses {\tt less\_equal<size_t>()} for lower triangular part {\tt tril}, 
  and {\tt greater\_equal<size_t>()} for upper part {\tt triu}.
  See also {\tt <functional.h>} for others usefull predicates.

 {\bf Example} \\
\begin{verbatim}
  template <class Difference>
  class less_equal_k : binary_function<Difference, Difference, bool> {
       Difference k;
     public:
       less_equal_k (Difference k1 = 0) : k(k1) {}
       bool operator()(const Difference& i, const Difference& j) const 
                         { return i-j <= k; }
  };
  trig (ia, ia+nrow+1, ja, a, ia, ja, a, less_equal_k (k))
\end{verbatim}

  The argument k specifies how many diagonals above the main diagonal should 
  also be set to zero. If the value of k is negative, additional elements above
  are also selected.
 \vfill \pagebreak \mbox{} \vfill
*/
namespace rheolef { 
template <
    class InputIterator1,
    class InputIterator2,
    class InputIterator3,
    class OutputIterator1,
    class OutputIterator2,
    class OutputIterator3,
    class BinaryPredicate>
inline
void
trig (
    InputIterator1  iter_ia,
    InputIterator1  last_ia,
    InputIterator2  iter_ja,
    InputIterator3  iter_a,
    OutputIterator1 iter_il,
    OutputIterator2 iter_jl,
    OutputIterator3 iter_l,
    BinaryPredicate select)
{
    size_t nnzl = 0;
    size_t i = 0; 
    size_t p = *iter_ia++;
    while (iter_ia < last_ia) {
        size_t nnzlold = nnzl;
	size_t pf = *iter_ia++;
        while (p < pf) {
            size_t j = *iter_ja++;
            if (select(j, i)) {
	        *iter_jl++ = j;
	        *iter_l++  = *iter_a++;
	        nnzl++;
            }
	    p++;
        }
        *iter_il++ = nnzlold;
        i++;
    }
    *iter_il++ = nnzl;
}
/*@! 
 \vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
  \caption{{\tt nnz\_triu, nnz\_tril}: 
	   count non-null in lower, upper triangular part}
  \begin{algorithmic}
    \NOTE {see {\tt tril} and {\tt triu}}
    \ENDNOTE
    \INPUT {the matrix in CSR format (without values)}
      ia(0:nrow), ja(0:nnz-1)
    \ENDINPUT
    \OUTPUT {number of non-null elements in selected part}
      nnzl
    \ENDOUTPUT
    \BEGIN 
      nnzl := 0 \\
      \FORTO{i := 0}{nrow-1}
        \FORTO{p := ia(i)} {ia(i+1)-1}
	  {\em here is lower; for upper, see the generic implementation}
	  \IF {ja(p) $\leq$ i}
	    nnzl++;
          \ENDIF
        \ENDFOR
      \ENDFOR
    \END
 \end{algorithmic} \end{algorithm}
 \vfill
*/
template <
    class InputIterator1,
    class InputIterator2,
    class BinaryPredicate>
inline
size_t
nnz_trig (
    InputIterator1  iter_ia,
    InputIterator1  last_ia,
    InputIterator2  iter_ja,
    BinaryPredicate select)
{
    size_t nnzg = 0;
    size_t p = *iter_ia++;
    size_t i = 0;
    while (iter_ia < last_ia) {
        size_t pf = *iter_ia++;
        while (p < pf) {
	    if (select(*iter_ja++, i))
		nnzg++;
	    ++p;
        }
        ++i;
    }
    return nnzg;
}
/*@! 
 \vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
  \caption{{\tt perm}: permutation: $B$ := $P*A*Q^t$, i.e a(p(i), q(j)) :== a(i,j)}
  \begin{algorithmic}
    \NOTE {}
       {\sc warning: } if the original matrix is sorted by increasing column order,
	then the permuted one may not be on return. see also {\tt csr\_sort} \\ \mbox{}
    \ENDNOTE
    \INPUT {the permutations and the CSR matrix}
      p(0:nrow-1), q(0:ncol-1), ia(0:nrow), ja(0:nnz-1), a(0:nnz-1)
    \ENDINPUT
    \OUTPUT {the permuted matrix}
      iao(0:nrow), jao(0:nnz-1), ao(0:nnz-1)
    \ENDOUTPUT
    \BEGIN 
      {\em first pass on ia and iao: get row length from pointers} \\
      iao(p(i)+1) := ia(i+1) - ia(i), \ i := 0\ldots nrow-1 \\ \mbox{} \\

      {\em second pass on iao: get new pointers from lengths} \\
      iao(0) := 0 \\
      iao(i+1) += iao(i), \ i := 0\ldots nrow-1 \\ \mbox{} \\

      {\em third pass on iao, second on ia: copy indexes and values} \\
      \FORTO {i := 0} {nrow-1}
	ro := iao (p(i)) \\
        \FORTO {r := ia(i)} {ia(i+1)-1}
	  jao(ro) := q(ja(r)) \\
	  ao(ro) := a(r)  \\
	  ro++
        \ENDFOR           
      \ENDFOR           
    \END
 \end{algorithmic} \end{algorithm} \vfill
 \vfill \pagebreak \mbox{} \vfill
*/
template <
    class RandomAccessIterator,
    class InputIterator,
    class MutableRandomAccessIterator>
size_t
_length_from_pointers (
    RandomAccessIterator        p,
    InputIterator               iter_ia,
    InputIterator               last_ia,
    MutableRandomAccessIterator rand_iao)
{
    size_t nrow    = 0;
    size_t prev_ia = *iter_ia++;
    while (iter_ia != last_ia) {
	size_t curr_ia = *iter_ia++;
	rand_iao [p[nrow]+1] = curr_ia - prev_ia;
	prev_ia = curr_ia;
	nrow++;
    }
    return nrow;
}
//@!\vfill
template <class MutableForwardIterator>
void
_pointers_from_length (
    MutableForwardIterator        first_iao,
    MutableForwardIterator        last_iao)
{
    size_t prev_iao = (*first_iao++) = 0;
    while (first_iao != last_iao)
	prev_iao = ( (*first_iao++) += prev_iao);
} 
//@! \vfill \pagebreak \mbox{} \vfill
template <
    class RandomAccessIterator1,
    class RandomAccessIterator2,
    class InputIterator1,
    class InputIterator2,
    class InputIterator3,
    class RandomAccessIterator3,
    class MutableRandomAccessIterator1,
    class MutableRandomAccessIterator2>
void
_perm_copy (
    RandomAccessIterator1              p,
    RandomAccessIterator2             q,
    InputIterator1                    iter_ia,
    InputIterator1                    last_ia,
    InputIterator2                    iter_ja,
    InputIterator3                    iter_a,
    RandomAccessIterator3             rand_iao,
    MutableRandomAccessIterator1      rand_jao,
    MutableRandomAccessIterator2      rand_ao)
{
    size_t r = *iter_ia++;
    size_t i = 0;
    while (iter_ia != last_ia) {
	size_t ko = rand_iao [p[i]];
	MutableRandomAccessIterator1 iter_jao = rand_jao + ko;
	MutableRandomAccessIterator2 iter_ao  = rand_ao  + ko;
	size_t last_r = *iter_ia++;
        while (r < last_r) {
	    *iter_jao++ = q[*iter_ja++];
	    *iter_ao++  = *iter_a++;
	    r++;
        }
	i++;
    }
}
//@! \vfill \pagebreak \mbox{} \vfill
template <
    class RandomAccessIterator,
    class ForwardIterator,
    class InputIterator1,
    class InputIterator2,
    class RandomAccessIterator1,
    class RandomAccessIterator2,
    class RandomAccessIterator3>
void
perm (
    RandomAccessIterator  p,
    RandomAccessIterator  q,
    ForwardIterator       first_ia,
    ForwardIterator       last_ia,
    InputIterator1        iter_ja,
    InputIterator2        iter_a,
    RandomAccessIterator1 rand_iao,
    RandomAccessIterator2 rand_jao,
    RandomAccessIterator3 rand_ao)
{
    size_t nrow;
    nrow = _length_from_pointers (p, first_ia, last_ia, rand_iao);
    _pointers_from_length (rand_iao, rand_iao + nrow + 1);
    _perm_copy (p, q, first_ia, last_ia, iter_ja, iter_a, rand_iao, rand_jao, rand_ao);
}
/*@! 
 \vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
  \caption{{\tt csr\_is\_sorted}: rows are sorted by increasing column order}
  \begin{algorithmic}
    \INPUT {the CSR matrix without values}
      ia(0:nrow), ja(0:nnz-1)
    \ENDINPUT
    \OUTPUT {boolean }
      is\_sorted
    \ENDOUTPUT
    \BEGIN 
      \FORTO {i := 0} {nrow-1}
        \FORTO {p := ia(i)+1} {ia(i+1)-1}
	  \IF {ja(p) <= ja(p-1)} 
	    is\_sorted := false
          \ENDIF
        \ENFOR
      \ENDFOR           
    \END
 \end{algorithmic} \end{algorithm} \vfill
 \vfill \pagebreak \mbox{} \vfill
*/
template <class InputIterator1, class InputIterator2>
bool
csr_is_sorted (
	InputIterator1 iter_ia,
	InputIterator1 last_ia,
	InputIterator2 iter_ja)
{
    size_t p = *iter_ia++;
    while (iter_ia != last_ia) {
	size_t last_p = *iter_ia++;
	if (p >= last_p) continue;
	p++;
	size_t old_j = *iter_ja++;
	size_t j;
	while (p < last_p) {
	    j = *iter_ja++;
	    p++;
	    if (old_j >= j) {
	      return false;
            }
	}
	old_j = j;
    }
    return true;
}
//@!\vfill
}// namespace rheolef
# endif // _SKIT_CSR_ALGORITHM_H