This file is indexed.

/usr/include/rheolef/blas-algorithm.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#ifndef _SKIT_BLAS_ALGORITHM_H
#define _SKIT_BLAS_ALGORITHM_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
//
// Algorithms for mat & vec expressions
//
// author: Pierre.Saramito@imag.fr
//
// date: 11 march 1997
//
# include "rheolef/skitbase.h"
namespace rheolef { 

// ============================[ CHECK SIZE ]====================================
template <class Vec1, class Vec2>
inline
void
check_length (const Vec1& x, const Vec2& y)
{
    check_macro (x.n() == y.n(), "incompatible: vec("
	<< x.n() << ") vec("
	<< y.n() << ") combination");
}
template <class A, class X>
inline
void
check_amulx_length (const A& a, const X& x)
{
    check_macro (a.ncol() == x.n(), "incompatible csr("
	<< a.nrow() << "," << a.ncol() << ")*vec("
	<< x.n()                       << ")");
}
// =================[ USEFULL CLASS FUNCTIONS ]==================================
template <class T1, class T2 = T1, class T3 = skit_promote(T1,T2)>
struct add_op : std::binary_function<T1, T2, T3> {
    T3 operator() (const T1& x, const T2& y) const { return x + y; }
};
template <class T1, class T2 = T1, class T3 = skit_promote(T1,T2)>
struct sub_op : std::binary_function<T1, T2, T3> {
    T3 operator() (const T1& x, const T2& y) const { return x - y; }
};
template <class T1, class T2 = T1, class T3 = skit_promote(T1,T2)>
struct mul_op : std::binary_function<T1, T2, T3> {
    T3 operator() (const T1& x, const T2& y) const { return x * y; }
};
template <class T1, class T2 = T1, class T3 = skit_promote(T1,T2)>
struct div_op : std::binary_function<T1, T2, T3> {
    T3 operator() (const T1& x, const T2& y) const { return x / y; }
};
template <class T1, class T2 = T1>
struct add_assign : std::binary_function<T1, T2, T1> {
    T1 operator()(T1& x, const T2& y) const { return x += y; }
};
template <class T1, class T2 = T1>
struct sub_assign : std::binary_function<T1, T2, T1> {
    T1 operator()(T1& x, const T2& y) const { return x -= y; }
};
template <class T1, class T2>
struct mul_assign : std::binary_function<T1, T2, T1> {
    T1 operator()(T1& x, const T2& y) const { return x *= y; }
};
template <class T1, class T2 = T1>
struct div_assign : std::binary_function<T1, T2, T1> {
    T1 operator()(T1& x, const T2& y) const { return x /= y; }
};
// z := op(x)
template 
   <class OutputIterator,
    class Operation,
    class InputIterator>
inline
void
zassignopx (
    OutputIterator iter_z,
    OutputIterator last_z,
    Operation      op,
    InputIterator  iter_x)
{
    while (iter_z != last_z) {
       (*iter_z) = op (*iter_x);
       ++iter_x;
       ++iter_z;
    }
}
// z := op(x,y)
template 
   <class OutputIterator,
    class BinaryOperation,
    class InputIterator1,
    class InputIterator2>
inline
void
zassignxopy (
    OutputIterator  iter_z,
    OutputIterator  last_z,
    BinaryOperation binary_op,
    InputIterator1  iter_x,
    InputIterator2  iter_y)
{
    while (iter_z != last_z) {
       (*iter_z) = binary_op (*iter_x, *iter_y);
       ++iter_x;
       ++iter_y;
       ++iter_z;
    }
}
// z op= x
template
   <class OutputIterator,
    class InputIterator,
    class ComputedAssignment>
inline
void
zopassignx (
    ComputedAssignment comp_assign,
    OutputIterator     iter_z,
    OutputIterator     last_z,
    InputIterator      iter_x)
{
    while (iter_z != last_z) {
    	comp_assign (*iter_z, *iter_x);
	++iter_z;
	++iter_x;
    }
}
// z op= lambda
template
   <class OutputIterator,
    class T,
    class ComputedAssignment>
inline
void
zopassignr (
    ComputedAssignment comp_assign,
    OutputIterator     iter_z,
    OutputIterator     last_z,
    const T&           lambda)
{
    while (iter_z != last_z) {
    	comp_assign (*iter_z, lambda);
	++iter_z;
    }
}
// ==============================[ SPARSE DOT ]==================================
// dot(sx,y); used in a*x
template <
    class ValueRandomConstIterator,
    class Pair,
    class T>
inline
void
sxdoty_one_step_cumul (
    T&                       sum,
    Pair                     sx_pair,
    ValueRandomConstIterator rand_y) 
{
    sum += (sx_pair.second) * (rand_y [sx_pair.first]);
}
template <
    class ValueRandomConstIterator, 
    class PairInputIterator, 
    class T>
T
sxdoty (
    PairInputIterator        iter_sx, 
    PairInputIterator        last_sx, 
    ValueRandomConstIterator rand_y, 
    const T&)
{
    T s = 0;
    while (iter_sx != last_sx) {
	sxdoty_one_step_cumul (s, *iter_sx, rand_y);
	++iter_sx;
    }
    return s;
}
// =======================[ SPARSE ASSIGNMENT ]==================================
// sz = op(sx); op = ident, -, abs,... unary operator
template<
    class PairInput,
    class Operation,
    class PairOutput>
inline
PairOutput
pair_apply (
    PairInput   sx_pair,
    Operation   op,
    PairOutput*)
{
    typedef typename Operation::result_type T;
    return PairOutput(sx_pair.first, op(sx_pair.second));
}
// sz := op(sx)
template<
    class Svec, 
    class Operation,
    class PairInputIterator>
void 
szassignopsx (
    Svec&              sz, 
    Operation          op,
    PairInputIterator  iter_sx, 
    PairInputIterator  last_sx)
{
    sz.reset();
    typename Svec::iterator prec_sz = sz.begin();
    typedef typename Svec::value_type pair_type;
    while (iter_sx != last_sx) {
        prec_sz = sz.insert (prec_sz, 
 	    pair_apply (*iter_sx, op, (pair_type*)(0)));
        ++iter_sx;
    }
}
// ==========================[ BLAS1 SPARSE +- ]=================================
// sx+-sy; one step logical
template <
    class PairInputIterator1, 
    class PairInputIterator2>
inline
void
sxaddopsy_one_step_iter (
    PairInputIterator1& iter_sx,
    PairInputIterator1  last_sx,
    PairInputIterator2& iter_sy,
    PairInputIterator2  last_sy)
{
    Index ind_sx = iter_sx == last_sx ? max_value((Index)(0)) : (*iter_sx).first;
    Index ind_sy = iter_sy == last_sy ? max_value((Index)(0)) : (*iter_sy).first;
    assert_macro (iter_sx != last_sx || iter_sy != last_sy, "past end.");
    if (ind_sx == ind_sy) {
        ++iter_sx;
        ++iter_sy;
    } else if (ind_sx < ind_sy) {
        ++iter_sx;
    } else {
        ++iter_sy;
    }
}
// sx+-sy; logical
template <
    class PairInputIterator1, 
    class PairInputIterator2>
Index
sxaddopsy_size (
    PairInputIterator1  iter_sx, 
    PairInputIterator1  last_sx,
    PairInputIterator2  iter_sy,
    PairInputIterator2  last_sy)
{
    Index size = 0;
    while (iter_sx != last_sx || iter_sy != last_sy) {				

	sxaddopsy_one_step_iter (iter_sx, last_sx, iter_sy, last_sy);
	size++;
    }
    return size;
}
template <
    class PairInputIterator1, 
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline 
Index
sxopsy_size (
    const add_op<T1, T2, T3>&,
    PairInputIterator1         iter_sx, 
    PairInputIterator1         last_sx,
    PairInputIterator2         iter_sy,
    PairInputIterator2         last_sy)
{
    return sxaddopsy_size (iter_sx, last_sx, iter_sy, last_sy);
}
template <
    class PairInputIterator1, 
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline 
Index
sxopsy_size (
    const sub_op<T1, T2, T3>&,
    PairInputIterator1         iter_sx, 
    PairInputIterator1         last_sx,
    PairInputIterator2         iter_sy,
    PairInputIterator2         last_sy)
{
    return sxaddopsy_size (iter_sx, last_sx, iter_sy, last_sy);
}
// sx+-sy; one full step (value and iter)
template <
    class BinaryOperation,
    class PairInputIterator1,
    class PairInputIterator2,
    class PairInput1,
    class PairInput2,
    class Index,
    class T3>
inline
std::pair<Index, T3>
sxaddopsy_one_step (
    BinaryOperation     binary_op,
    PairInputIterator1& iter_sx, 
    PairInputIterator1  last_sx,
    PairInput1          pair_sx,
    PairInputIterator2& iter_sy, 
    PairInputIterator2  last_sy,
    PairInput2          pair_sy,
    std::pair<Index, T3>*)
{
    typedef typename BinaryOperation::first_argument_type  T1;
    typedef typename BinaryOperation::second_argument_type T2;
    Index ind_sx = iter_sx == last_sx ? max_value((Index)(0)) : pair_sx.first;
    Index ind_sy = iter_sy == last_sy ? max_value((Index)(0)) : pair_sy.first;
    assert_macro (iter_sx != last_sx || iter_sy != last_sy, "past end.");
    if (ind_sx == ind_sy) {
	    std::pair<Index, T3> res (ind_sx, binary_op (pair_sx.second, pair_sy.second));
        ++iter_sx;
        ++iter_sy;
        return res;
    } else if (ind_sx < ind_sy) {
	    std::pair<Index, T3> res(ind_sx, binary_op (pair_sx.second, T2()));
        ++iter_sx;
        return res;
    } else {
	std::pair<Index, T3> res(ind_sy, binary_op (T1(), pair_sy.second));
	++iter_sy;
        return res;
    }
}
template <
    class PairInputIterator1,
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline
std::pair<Index, T3>
sxopsy_one_step (
    const add_op<T1, T2, T3>& add,
    PairInputIterator1&       iter_sx, 
    PairInputIterator1        last_sx,
    PairInputIterator2&       iter_sy, 
    PairInputIterator2        last_sy)
{
    return sxaddopsy_one_step (add, iter_sx, last_sx, *iter_sx,
				    iter_sy, last_sy, *iter_sy, 
				    (std::pair<Index, T3>*)(0));
}
template <
    class PairInputIterator1,
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline
std::pair<Index, T3>
sxopsy_one_step (
    const sub_op<T1, T2, T3>& sub,
    PairInputIterator1&       iter_sx, 
    PairInputIterator1        last_sx,
    PairInputIterator2&       iter_sy, 
    PairInputIterator2        last_sy)
{
    return sxaddopsy_one_step (sub, iter_sx, last_sx, *iter_sx,
				    iter_sy, last_sy, *iter_sy,
				    (std::pair<Index, T3>*)(0));
}
// sx +- sy; complete loop
template <
    class Svec,
    class BinaryOperation,
    class PairInputIterator1,
    class PairInputIterator2>
void
sxaddopsy_ (
    Svec&              sz,
    BinaryOperation    binary_op,
    PairInputIterator1 iter_sx,
    PairInputIterator1 last_sx,
    PairInputIterator2 iter_sy,
    PairInputIterator2 last_sy)
{
    typedef typename Svec::value_type Pair3;
    typedef typename Svec::iterator   PairIterator3;
    PairIterator3 prec_sz = sz.begin();
    while (iter_sx != last_sx && iter_sy != last_sy) {
	prec_sz = sz.insert (prec_sz,
	  sxaddopsy_one_step (binary_op, 
	    iter_sx, last_sx, *iter_sx,
	    iter_sy, last_sy, *iter_sy,
	    (Pair3*)(0)));
    }
    typedef typename std::iterator_traits<PairInputIterator2>::value_type Pair2;
    typedef typename Pair2::first_type T2;
    while (iter_sx != last_sx) {
        Pair3 res ((*iter_sx).first, binary_op ((*iter_sx).second, T2()));
	prec_sz = sz.insert (prec_sz, res);
        ++iter_sx;
    }
    typedef typename std::iterator_traits<PairInputIterator1>::value_type pair1_type;
    typedef typename pair1_type::first_type T1;
    while (iter_sy != last_sy) {
        Pair3 res ((*iter_sy).first, binary_op (T1(), (*iter_sy).second));
	prec_sz = sz.insert (prec_sz, res);
        ++iter_sy;
    }
}
template <
    class Svec,
    class PairInputIterator1,
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline
void
sxopsy (
    Svec&                     sz,
    const add_op<T1, T2, T3>& add,
    PairInputIterator1        iter_sx,
    PairInputIterator1        last_sx,
    PairInputIterator2        iter_sy,
    PairInputIterator2        last_sy)
{
    sxaddopsy_ (sz, add, iter_sx, last_sx, iter_sy, last_sy);
}
template <
    class Svec,
    class PairInputIterator1,
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline
void
sxopsy (
    Svec& sz,
    const sub_op<T1, T2, T3>& sub,
    PairInputIterator1        iter_sx,
    PairInputIterator1        last_sx,
    PairInputIterator2        iter_sy,
    PairInputIterator2        last_sy)
{
    sxaddopsy_ (sz, sub, iter_sx, last_sx, iter_sy, last_sy);
}
template <
    class PairInputIterator1,
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline
void
sxopsy_init (
    const add_op<T1, T2, T3>&,
    PairInputIterator1        iter_sx,
    PairInputIterator1        last_sx,
    PairInputIterator2        iter_sy,
    PairInputIterator2        last_sy)
{
    /* for compatibility with mul */
}
template <
    class PairInputIterator1,
    class PairInputIterator2,
    class T1,
    class T2,
    class T3>
inline
void
sxopsy_init (
    const sub_op<T1, T2, T3>&,
    PairInputIterator1        iter_sx,
    PairInputIterator1        last_sx,
    PairInputIterator2        iter_sy,
    PairInputIterator2        last_sy)
{
    /* for compatibility with mul */
}
}// namespace rheolef
#endif // _SKIT_BLAS_ALGORITHM_H