/usr/include/ql/termstructures/credit/probabilitytraits.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Jose Aparicio
Copyright (C) 2008 Chris Kenyon
Copyright (C) 2008 Roland Lichters
Copyright (C) 2008 StatPro Italia srl
Copyright (C) 2009 Ferdinando Ametrano
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file probabilitytraits.hpp
\brief default-probability bootstrap traits
*/
#ifndef ql_probability_traits_hpp
#define ql_probability_traits_hpp
#include <ql/termstructures/credit/interpolatedsurvivalprobabilitycurve.hpp>
#include <ql/termstructures/credit/interpolatedhazardratecurve.hpp>
#include <ql/termstructures/credit/interpolateddefaultdensitycurve.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
namespace QuantLib {
namespace detail {
const Rate avgHazardRate = 0.01;
}
//! Survival-Probability-curve traits
struct SurvivalProbability {
// interpolated curve type
template <class Interpolator>
struct curve {
typedef InterpolatedSurvivalProbabilityCurve<Interpolator> type;
};
// helper class
typedef BootstrapHelper<DefaultProbabilityTermStructure> helper;
// start of curve data
static Date initialDate(const DefaultProbabilityTermStructure* c) {
return c->referenceDate();
}
// value at reference date
static Real initialValue(const DefaultProbabilityTermStructure*) {
return 1.0;
}
// true if the initialValue is just a dummy value
static bool dummyInitialValue() { return false; }
// initial guess
static Real initialGuess() {
return 1.0/(1.0+detail::avgHazardRate*0.25);
}
// further guesses
static Real guess(const DefaultProbabilityTermStructure* c,
const Date& d) {
return c->survivalProbability(d,true);
}
// possible constraints based on previous values
static Real minValueAfter(Size,
const std::vector<Real>&) {
return QL_EPSILON;
}
static Real maxValueAfter(Size i,
const std::vector<Real>& data) {
return data[i-1];
}
// update with new guess
static void updateGuess(std::vector<Real>& data,
Probability p,
Size i) {
data[i] = p;
}
// upper bound for convergence loop
static Size maxIterations() { return 50; }
};
//! Hazard-rate-curve traits
struct HazardRate {
// interpolated curve type
template <class Interpolator>
struct curve {
typedef InterpolatedHazardRateCurve<Interpolator> type;
};
// helper class
typedef BootstrapHelper<DefaultProbabilityTermStructure> helper;
// start of curve data
static Date initialDate(const DefaultProbabilityTermStructure* c) {
return c->referenceDate();
}
// dummy value at reference date
static Real initialValue(const DefaultProbabilityTermStructure*) {
return detail::avgHazardRate;
}
// true if the initialValue is just a dummy value
static bool dummyInitialValue() { return true; }
// initial guess
static Real initialGuess() { return detail::avgHazardRate; }
// further guesses
static Real guess(const DefaultProbabilityTermStructure* c,
const Date& d) {
return c->hazardRate(d, true);
}
// possible constraints based on previous values
static Real minValueAfter(Size,
const std::vector<Real>&) {
return QL_EPSILON;
}
static Real maxValueAfter(Size,
const std::vector<Real>&) {
// no constraints.
// We choose as max a value very unlikely to be exceeded.
return 200.0;
}
// update with new guess
static void updateGuess(std::vector<Real>& data,
Real rate,
Size i) {
data[i] = rate;
if (i == 1)
data[0] = rate; // first point is updated as well
}
// upper bound for convergence loop
static Size maxIterations() { return 30; }
};
//! Default-density-curve traits
struct DefaultDensity {
// interpolated curve type
template <class Interpolator>
struct curve {
typedef InterpolatedDefaultDensityCurve<Interpolator> type;
};
// helper class
typedef BootstrapHelper<DefaultProbabilityTermStructure> helper;
// start of curve data
static Date initialDate(const DefaultProbabilityTermStructure* c) {
return c->referenceDate();
}
// value at reference date
static Real initialValue(const DefaultProbabilityTermStructure*) {
return detail::avgHazardRate;
}
// true if the initialValue is just a dummy value
static bool dummyInitialValue() { return true; }
// initial guess
static Real initialGuess() { return detail::avgHazardRate; }
// further guesses
static Real guess(const DefaultProbabilityTermStructure* c,
const Date& d) {
return c->defaultDensity(d, true);
}
// possible constraints based on previous values
static Real minValueAfter(Size,
const std::vector<Real>&) {
return QL_EPSILON;
}
static Real maxValueAfter(Size,
const std::vector<Real>&) {
// no constraints.
// We choose as max a value very unlikely to be exceeded.
return 3.0;
}
// update with new guess
static void updateGuess(std::vector<Real>& data,
Real density,
Size i) {
data[i] = density;
if (i == 1)
data[0] = density; // first point is updated as well
}
// upper bound for convergence loop
static Size maxIterations() { return 30; }
};
}
#endif
|