This file is indexed.

/usr/include/ql/pricingengines/blackformula.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
 Copyright (C) 2003, 2004, 2005, 2006, 2008 Ferdinando Ametrano
 Copyright (C) 2006 Mark Joshi
 Copyright (C) 2006 StatPro Italia srl
 Copyright (C) 2007 Cristina Duminuco
 Copyright (C) 2007 Chiara Fornarola

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file blackformula.hpp
    \brief Black formula
*/

#ifndef quantlib_blackformula_hpp
#define quantlib_blackformula_hpp

#include <ql/option.hpp>
#include <ql/instruments/payoffs.hpp>

namespace QuantLib {

    /*! Black 1976 formula
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormula(Option::Type optionType,
                      Real strike,
                      Real forward,
                      Real stdDev,
                      Real discount = 1.0,
                      Real displacement = 0.0);

    /*! Black 1976 formula
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormula(const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                      Real forward,
                      Real stdDev,
                      Real discount = 1.0,
                      Real displacement = 0.0);


    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated using Brenner and Subrahmanyan (1988) and Feinstein
        (1988) approximation for at-the-money forward option, with the
        extended moneyness approximation by Corrado and Miller (1996)
    */
    Real blackFormulaImpliedStdDevApproximation(Option::Type optionType,
                                                Real strike,
                                                Real forward,
                                                Real blackPrice,
                                                Real discount = 1.0,
                                                Real displacement = 0.0);

    /*! Approximated Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity).

        It is calculated using Brenner and Subrahmanyan (1988) and Feinstein
        (1988) approximation for at-the-money forward option, with the
        extended moneyness approximation by Corrado and Miller (1996)
    */
    Real blackFormulaImpliedStdDevApproximation(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real blackPrice,
                        Real discount = 1.0,
                        Real displacement = 0.0);


    /*! Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaImpliedStdDev(Option::Type optionType,
                                   Real strike,
                                   Real forward,
                                   Real blackPrice,
                                   Real discount = 1.0,
                                   Real displacement = 0.0,
                                   Real guess = Null<Real>(),
                                   Real accuracy = 1.0e-6,
                                   Natural maxIterations = 100);

    /*! Black 1976 implied standard deviation,
        i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaImpliedStdDev(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real blackPrice,
                        Real discount = 1.0,
                        Real displacement = 0.0,
                        Real guess = Null<Real>(),
                        Real accuracy = 1.0e-6,
                        Natural maxIterations = 100);


    /*! Black 1976 probability of being in the money (in the bond martingale
        measure), i.e. N(d2).
        It is a risk-neutral probability, not the real world one.
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaCashItmProbability(Option::Type optionType,
                                        Real strike,
                                        Real forward,
                                        Real stdDev,
                                        Real displacement = 0.0);

    /*! Black 1976 probability of being in the money (in the bond martingale
        measure), i.e. N(d2).
        It is a risk-neutral probability, not the real world one.
        \warning instead of volatility it uses standard deviation,
                 i.e. volatility*sqrt(timeToMaturity)
    */
    Real blackFormulaCashItmProbability(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real displacement = 0.0);


    /*! Black 1976 formula for standard deviation derivative
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
                 If T is the time to maturity Black vega would be
                 blackStdDevDerivative(strike, forward, stdDev)*sqrt(T)
    */
    Real blackFormulaStdDevDerivative(Real strike,
                                      Real forward,
                                      Real stdDev,
                                      Real discount = 1.0,
                                      Real displacement = 0.0);

     /*! Black 1976 formula for  derivative with respect to implied vol, this
     is basically the vega, but if you want 1% change multiply by 1%
    */
    Real blackFormulaVolDerivative(Real strike,
                                      Real forward,
                                      Real stdDev,
                                      Real expiry,
                                      Real discount = 1.0,
                                      Real displacement = 0.0);


    /*! Black 1976 formula for standard deviation derivative
        \warning instead of volatility it uses standard deviation, i.e.
                 volatility*sqrt(timeToMaturity), and it returns the
                 derivative with respect to the standard deviation.
                 If T is the time to maturity Black vega would be
                 blackStdDevDerivative(strike, forward, stdDev)*sqrt(T)
    */
    Real blackFormulaStdDevDerivative(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real discount = 1.0,
                        Real displacement = 0.0);


    /*! Black style formula when forward is normal rather than
        log-normal. This is essentially the model of Bachelier.

        \warning Bachelier model needs absolute volatility, not
                 percentage volatility. Standard deviation is
                 absoluteVolatility*sqrt(timeToMaturity)
    */
    Real bachelierBlackFormula(Option::Type optionType,
                               Real strike,
                               Real forward,
                               Real stdDev,
                               Real discount = 1.0);

    /*! Black style formula when forward is normal rather than
        log-normal. This is essentially the model of Bachelier.

        \warning Bachelier model needs absolute volatility, not
                 percentage volatility. Standard deviation is
                 absoluteVolatility*sqrt(timeToMaturity)
    */
    Real bachelierBlackFormula(
                        const boost::shared_ptr<PlainVanillaPayoff>& payoff,
                        Real forward,
                        Real stdDev,
                        Real discount = 1.0);

}

#endif